108 research outputs found

    A comparative assessment of the utility of PCR-based marker systems in pearl millet

    Get PDF
    A set of 22 pearl millet inbred lines including the parents of eleven mapping populations, was screened with 627 markers including 100 pearl millet genomic SSRs (gSSRs), 60 pearl millet ESTSSRs (eSSRs), 410 intron sequence haplotypes (ISHs), and 57 exon sequence haplotypes (ESHs). In all, 267 (59%) of themarkers were informative for at least one of the 11 mapping populations, which segregate for traits like drought and salinity tolerance; host plant resistance to downymildew, rust and blast; fertility restoration and sterility and maintenance of cytoplasmic male sterility etc. An average of 116 polymorphic markers was identified per mapping population. The average PIC values and number of profiles (P) per polymorphic marker were: gSSRs (PIC = 0.62, P = 6.1), ISHs (PIC = 0.39, P = 2.6), eSSRs (PIC = 0.36, P = 3.1) and ESHs (PIC = 0.35, P = 3.1). A high correlation (r[0.97, P\0.05) was observed between the patterns of diversity exposed by the different marker systems. The polymorphic markers identified are suitable for the de novo construction, or the supplementation of pearl millet linkagemaps. The genetic relationships identified among the panel of inbred lines may be useful in designing strategies to improve the use of available genetic variation in the context of pearl millet breeding

    Macro-Climatic Distribution Limits Show Both Niche Expansion and Niche Specialization among C4 Panicoids

    Get PDF
    Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.Fil: Aagesen, Lone. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Biganzoli, Fernando. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bena, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Godoy Bürki, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; ArgentinaFil: Reinheimer, Renata. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Zuloaga, Fernando Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; Argentin

    Linking the Epigenome to the Genome: Correlation of Different Features to DNA Methylation of CpG Islands

    Get PDF
    DNA methylation of CpG islands plays a crucial role in the regulation of gene expression. More than half of all human promoters contain CpG islands with a tissue-specific methylation pattern in differentiated cells. Still today, the whole process of how DNA methyltransferases determine which region should be methylated is not completely revealed. There are many hypotheses of which genomic features are correlated to the epigenome that have not yet been evaluated. Furthermore, many explorative approaches of measuring DNA methylation are limited to a subset of the genome and thus, cannot be employed, e.g., for genome-wide biomarker prediction methods. In this study, we evaluated the correlation of genetic, epigenetic and hypothesis-driven features to DNA methylation of CpG islands. To this end, various binary classifiers were trained and evaluated by cross-validation on a dataset comprising DNA methylation data for 190 CpG islands in HEPG2, HEK293, fibroblasts and leukocytes. We achieved an accuracy of up to 91% with an MCC of 0.8 using ten-fold cross-validation and ten repetitions. With these models, we extended the existing dataset to the whole genome and thus, predicted the methylation landscape for the given cell types. The method used for these predictions is also validated on another external whole-genome dataset. Our results reveal features correlated to DNA methylation and confirm or disprove various hypotheses of DNA methylation related features. This study confirms correlations between DNA methylation and histone modifications, DNA structure, DNA sequence, genomic attributes and CpG island properties. Furthermore, the method has been validated on a genome-wide dataset from the ENCODE consortium. The developed software, as well as the predicted datasets and a web-service to compare methylation states of CpG islands are available at http://www.cogsys.cs.uni-tuebingen.de/software/dna-methylation/

    A Structural Split in the Human Genome

    Get PDF
    Background: Promoter-associated CpG islands (PCIs) mediate methylation-dependent gene silencing, yet tend to co-locate to transcriptionally active genes. To address this paradox, we used data mining to assess the behavior of PCI-positive (PCI+) genes in the human genome. Results: PCI+ genes exhibit a bimodal distribution: (1) a 'housekeeping-like' subset characterized by higher GC content and lower intron length/number, and (2) a 'pseudogene paralog' subset characterized by lower GC content and higher intron length/number (p<0.001). These subsets are functionally distinguishable, with the former gene group characterized by higher expression levels and lower evolutionary rate (p<0.001). PCI-negative (PCI-) genes exhibit higher evolutionary rate and narrower expression breadth than PCI+ genes (p<0.001), consistent with more frequent tissue-specific inactivation. Conclusions: Adaptive evolution of the human genome appears driven in part by declining transcription of a subset of PCI+ genes, predisposing to both CpG→TpA mutation and intron insertion. We propose a model of evolving biological complexity in which environmentally-selected gains or losses of PCI methylation respectively favor positive or negative selection, thus polarizing PCI+ gene structures around a genomic core of ancestral PCI- genes. © 2007 Tang, Epstein.published_or_final_versio

    Identification of SNP and SSR markers in eggplant using RAD tag sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The eggplant (<it>Solanum melongena </it>L.) genome is relatively unexplored, especially compared to those of the other major <it>Solanaceae </it>crops tomato and potato. In particular, no SNP markers are publicly available; on the other hand, over 1,000 SSR markers were developed and publicly available. We have combined the recently developed Restriction-site Associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of both SNP and SSR markers for eggplant.</p> <p>Results</p> <p>RAD tags were generated from the genomic DNA of a pair of eggplant mapping parents, and sequenced to produce ~17.5 Mb of sequences arrangeable into ~78,000 contigs. The resulting non-redundant genomic sequence dataset consisted of ~45,000 sequences, of which ~29% were putative coding sequences and ~70% were in common between the mapping parents. The shared sequences allowed the discovery of ~10,000 SNPs and nearly 1,000 indels, equivalent to a SNP frequency of 0.8 per Kb and an indel frequency of 0.07 per Kb. Over 2,000 of the SNPs are likely to be mappable via the Illumina GoldenGate assay. A subset of 384 SNPs was used to successfully fingerprint a panel of eggplant germplasm, producing a set of informative diversity data. The RAD sequences also included nearly 2,000 putative SSRs, and primer pairs were designed to amplify 1,155 loci.</p> <p>Conclusion</p> <p>The high throughput sequencing of the RAD tags allowed the discovery of a large number of DNA markers, which will prove useful for extending our current knowledge of the genome organization of eggplant, for assisting in marker-aided selection and for carrying out comparative genomic analyses within the <it>Solanaceae </it>family.</p

    Breast Cancer Epigenetics: From DNA Methylation to microRNAs

    Get PDF
    Both appropriate DNA methylation and histone modifications play a crucial role in the maintenance of normal cell function and cellular identity. In cancerous cells these “epigenetic belts” become massively perturbed, leading to significant changes in expression profiles which confer advantage to the development of a malignant phenotype. DNA (cytosine-5)-methyltransferase 1 (Dnmt1), Dnmt3a and Dnmt3b are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells. Intriguingly, DNMTs were found to be overexpressed in cancerous cells, which is believed to partly explain the hypermethylation phenomenon commonly observed in tumors. However, several lines of evidence indicate that further layers of gene regulation are critical coordinators of DNMT expression, catalytic activity and target specificity. Splice variants of DNMT transcripts have been detected which seem to modulate methyltransferase activity. Also, the DNMT mRNA 3′UTR as well as the coding sequence harbors multiple binding sites for trans-acting factors guiding post-transcriptional regulation and transcript stabilization. Moreover, microRNAs targeting DNMT transcripts have recently been discovered in normal cells, yet expression of these microRNAs was found to be diminished in breast cancer tissues. In this review we summarize the current knowledge on mechanisms which potentially lead to the establishment of a DNA hypermethylome in cancer cells

    A genetically anchored physical framework for Theobroma cacao cv. Matina 1-6

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The fermented dried seeds of <it>Theobroma cacao </it>(cacao tree) are the main ingredient in chocolate. World cocoa production was estimated to be 3 million tons in 2010 with an annual estimated average growth rate of 2.2%. The cacao bean production industry is currently under threat from a rise in fungal diseases including black pod, frosty pod, and witches' broom. In order to address these issues, genome-sequencing efforts have been initiated recently to facilitate identification of genetic markers and genes that could be utilized to accelerate the release of robust <it>T. cacao </it>cultivars. However, problems inherent with assembly and resolution of distal regions of complex eukaryotic genomes, such as gaps, chimeric joins, and unresolvable repeat-induced compressions, have been unavoidably encountered with the sequencing strategies selected.</p> <p>Results</p> <p>Here, we describe the construction of a BAC-based integrated genetic-physical map of the <it>T. cacao </it>cultivar Matina 1-6 which is designed to augment and enhance these sequencing efforts. Three BAC libraries, each comprised of 10× coverage, were constructed and fingerprinted. 230 genetic markers from a high-resolution genetic recombination map and 96 Arabidopsis-derived conserved ortholog set (COS) II markers were anchored using pooled overgo hybridization. A dense tile path consisting of 29,383 BACs was selected and end-sequenced. The physical map consists of 154 contigs and 4,268 singletons. Forty-nine contigs are genetically anchored and ordered to chromosomes for a total span of 307.2 Mbp. The unanchored contigs (105) span 67.4 Mbp and therefore the estimated genome size of <it>T. cacao </it>is 374.6 Mbp. A comparative analysis with <it>A. thaliana, V. vinifera</it>, and <it>P. trichocarpa </it>suggests that comparisons of the genome assemblies of these distantly related species could provide insights into genome structure, evolutionary history, conservation of functional sites, and improvements in physical map assembly. A comparison between the two <it>T. cacao </it>cultivars Matina 1-6 and Criollo indicates a high degree of collinearity in their genomes, yet rearrangements were also observed.</p> <p>Conclusions</p> <p>The results presented in this study are a stand-alone resource for functional exploitation and enhancement of <it>Theobroma cacao </it>but are also expected to complement and augment ongoing genome-sequencing efforts. This resource will serve as a template for refinement of the <it>T. cacao </it>genome through gap-filling, targeted re-sequencing, and resolution of repetitive DNA arrays.</p

    Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Beclin 1, an important autophagy-related protein in human cells, is involved in cell death and cell survival. <it>Beclin 1 </it>mapped to human chromosome 17q21. It is widely expressed in normal mammary epithelial cells. Although down-regulated expression with mono-allelic deletions of <it>beclin 1 </it>gene was frequently observed in breast tumors, whether there was other regulatory mechanism of <it>beclin 1 </it>was to be investigated. We studied the expression of beclin 1 and explored the possible regulatory mechanisms on its expression in breast tumors.</p> <p>Methods</p> <p>20 pairs of tumors and adjacent normal tissues from patients with sporadic breast invasive ductal cancer (IDCs) were collected. The mRNA expression of <it>beclin 1 </it>was detected by real-time quantitative RT-PCR. Loss of heterozygosity (LOH) was determined by real-time quantitative PCR and microsatellite methods. The protein expression of beclin 1, p53, BRCA1 and BRCA2 was assessed by immunohistochemistry. CpG islands in 5' genomic region of beclin 1 gene were identified using MethylPrimer Program. Sodium bisulfite sequencing was used in examining the methylation status of each CpG island.</p> <p>Results</p> <p>Decreased <it>beclin 1 </it>mRNA expression was detected in 70% of the breast tumors, and the protein levels were co-related to the mRNA levels. Expression of <it>beclin 1 </it>mRNA was demonstrated to be much higher in the BRCA1 positive tumors than that in the BRCA1 negative ones. Loss of heterozygosity was detected in more than 45% of the breast tumors, and a dense cluster of CpG islands was found from the 5' end to the intron 2 of the <it>beclin 1 </it>gene. Methylation analysis showed that the promoter and the intron 2 of beclin 1 were aberrantly methylated in the tumors with decreased expression.</p> <p>Conclusions</p> <p>These data indicated that LOH and aberrant DNA methylation might be the possible reasons of the decreased expression of <it>beclin 1 </it>in the breast tumors. The findings here shed some new light on the regulatory mechanisms of beclin 1 in breast cancer.</p
    corecore