233 research outputs found

    Positive solutions to indefinite Neumann problems when the weight has positive average

    Full text link
    We deal with positive solutions for the Neumann boundary value problem associated with the scalar second order ODE u"+q(t)g(u)=0,t∈[0,T], u" + q(t)g(u) = 0, \quad t \in [0, T], where g:[0,+∞[ →Rg: [0, +\infty[\, \to \mathbb{R} is positive on  ]0,+∞[ \,]0, +\infty[\, and q(t)q(t) is an indefinite weight. Complementary to previous investigations in the case ∫0Tq(t)<0\int_0^T q(t) < 0, we provide existence results for a suitable class of weights having (small) positive mean, when gâ€Č(x)<0g'(x) < 0 at infinity. Our proof relies on a shooting argument for a suitable equivalent planar system of the type xâ€Č=y,yâ€Č=h(x)y2+q(t), x' = y, \qquad y' = h(x)y^2 + q(t), with h(x)h(x) a continuous function defined on the whole real line.Comment: 17 pages, 3 figure

    primary cutaneous cd30 anaplastic large cell lymphoma in a heart transplant patient case report and literature review

    Get PDF
    Solid organ transplant recipients are at risk of develop ing a wide range of viral-associated malignancies, in cluding skin tumours and lymphoproliferative disorders. The risk of a post-transplant lymphoproliferative disorder is 28–49 times the risk of a lymphoproliferative disorder in the normal population. Most cases are of B-cell phenotype and are associated with Epstein-Barr virus infection. Post-transplant lymphoproliferative disorders presenting clinically in the skin are rare and usually of B-cell phenotype. Only rare cases of cutaneous T-cell post-transplant lymphoproliferative disorder have been reported previously, mostly mycosis fungoides type. We describe here a rare primary cutaneous T-cell lymphoma CD30+ arising in a heart transplant patient who had a nodule on the right leg, several years after heart transplantation. The morphology and immunohistochemical findings were consistent with a CD30+ anaplastic large cell lymphoma with a T-cell phenotype. Excisional biopsy and radiotherapy of the affected area were performed. In this patient, the presence of a solitary lesion and th

    Modeling enteric methane emission from beef cattle in Brazil: a proposed equation performed by principal component analysis and mixed modeling multiple regression.

    Get PDF
    Brazil has the largest commercial beef cattle herd in the world but does not have its own model to predict methane (CH4 ) emission. The aim of this study was to create the first empirical enteric CH4 emission equation from variables that describe the animal diet using a meta-analytical data from Brazilian scientific publications (n = 50, published from 2003 to 2012)

    Gestational age acceleration is associated with epigenetic biomarkers of prenatal physiologic stress exposure

    Get PDF
    BACKGROUND: Physiological maternal stress response, such as imbalance in the glucocorticoid pathway and immune system seems to be mediated by DNA methylation (DNAm) and might translate intrauterine stress exposures into phenotypic changes in a sex-specific manner. DNAm in specific sites can also predict newborn gestational age and gestational age acceleration (GAA). GAA occurs when the predicted biological age is higher than the chronological age. In adults, poor health outcomes related to this deviance are well documented and raise questions for the interpretation and prediction in early stages of life. Boys seem to be more vulnerable to intrauterine stress exposure than girls; however, the mechanisms of adaptive sex-specific responses are still unclear. We hypothesize that intrauterine stress exposure is associated with GAA and could be different in boys and girls if inflammatory or glucocorticoid pathways exposure is considered. RESULTS: Using the Western Region Birth Cohort (ROC-Sao Paulo, Brazil) (n = 83), we calculated DNAm age and GAA from cord blood samples. Two epigenetic risk scores were calculated as an indirect proxy for low-grade inflammation (i-ePGS) and for glucocorticoid exposure (GES). Multivariate linear regression models were applied to investigate associations of GAA with prenatal exposures. The i-ePGS and GES were included in different models with the same co-variates considering sex interactions. The first multivariate model investigating inflammatory exposure (adj. R(2) = 0.31, p = < 0.001) showed that GAA was positively associated with i-ePGS (CI, 0.26-113.87, p = 0.049) and negative pregnancy-related feelings (CI, 0.04-0.48 p = 0.019). No sex interaction was observed. The second model investigating glucocorticoid exposure (adj. R(2) = 0.32, p = < 0.001) showed that the higher was the GAA was associated with a lower the lower was the GES in girls (CI, 0.04-2.55, p = 0.044). In both models, maternal self-reported mental disorder was negatively associated with GAA. CONCLUSION: Prenatal epigenetic score of exposure to low-grade inflammatory was a predictor of GAA for both sexes. Glucocorticoid epigenetic score seems to be more important to GAA in girls. This study supports the evidence of sex-specificity in stress response, suggesting the glucocorticoid as a possible pathway adopted by girls to accelerate the maturation in an adverse condition

    Modeling the NB-IoT transmission process with intermittent network availability

    Get PDF
    Standardized by 3GPP, Narrowband Internet-of-Thing (NB-IoT) technology operating in licensed bands is nowadays widely deployed and utilized for static deployments of IoT communications services. The recent trend to equip large complex inherently nomadic systems such as trains and ships with advanced sensory capabilities call for mobility support in NB-IoT technology. Such systems entering and leaving the NB-IoT coverage periodically could lead to synchronized behavior of sensor nodes resulting in occasional spikes in the number of sensors simultaneously accessing the NB-IoT random access channel. In this study, we develop a model capturing behavior of nomadic systems roaming between coverage of NB-IoT technology. The metrics of interest are mean message transmission delay as well as the message loss probability. Our numerical results illustrate that these metrics are mainly affected by the duration of the outage interval and fraction of time systems spends in outage conditions. At the same time, the loss and delay performance only insignificantly affected by the number of sensors implying that NB-IoT random access procedure may efficiently handle sporadic loads.acceptedVersionPeer reviewe

    ZnO Transparent conductive oxide for thin film silicon solar cells

    Get PDF
    There is general agreement that the future production of electric energy has to be renewable and sustainable in the long term. Photovoltaic (PV) is booming with more than 7GW produced in 2008 and will therefore play an important role in the future electricity supply mix. Currently, crystalline silicon (c-Si) dominates the market with a share of about 90%. Reducing the cost per watt peak and energy pay back time of PV was the major concern of the last decade and remains the main challenge today. For that, thin film silicon solar cells has a strong potential because it allies the strength of c-Si (i.e. durability, abundancy, non toxicity) together with reduced material usage, lower temperature processes and monolithic interconnection. One of the technological key points is the transparent conductive oxide (TCO) used for front contact, barrier layer or intermediate reflector. In this paper, we report on the versatility of ZnO grown by low pressure chemical vapor deposition (ZnO LP-CVD) and its application in thin film silicon solar cells. In particular, we focus on the transparency, the morphology of the textured surface and its effects on the light in-coupling for micromorph tandem cells in both the substrate (n-i-p) and superstrate (p-i-n) configurations. The stabilized efficiencies achieved in NeuchĂątel are 11.2% and 9.8% for p-i-n (without ARC) and n-i-p (plastic substrate), respectively

    Research and developments in thin film silicon photovoltaics

    Get PDF
    The increasing demand for photovoltaic devices and the associated crystalline silicon feedstock demand scenario have led in the past years to the fast growth of the thin film silicon industry. The high potential for cost reduction and the suitability for building integration have initiated both industrial and research laboratories dynamisms for amorphous silicon and micro-crystalline silicon based photovoltaic technologies. The recent progress towards higher efficiencies thin film silicon solar cells obtained at the IMT-EPFL in Neuchatel in small-area laboratory and semi-large-area industrial Plasma Enhanced Chemical Vapor Deposition (PE-CVD) systems are reviewed. Advanced light trapping schemes are fundamental to reach high conversion efficiency and the potential of advanced Transparent Conductive Oxides (TCO) is presented, together with issues associated to the impact of the substrate morphology onto the growth of the silicon films. The recent improvements realized in amorphous-microcrystalline tandem solar cells on glass substrate are then presented, and the latest results on 1 cm2 cells are reported with up to 13.3 % initial efficiency for small-area reactors and up to 12.3 % initial for large-area industrial reactors. Finally, the different strategies to reach an improved light confinement in a thin film solar cell deposited on a flexible substrate are discussed, with the incorporation of asymmetric intermediate reflectors. Results of micromorph solar cells in the n-i-p configuration with up to 9.8 % stabilized efficiency are reported

    Importance of Spin-Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications

    No full text
    International audienceThree-dimensional (3D) hybrid perovskites CH3NH3PbX3 (X = Br, I) have recently been suggested as new key materials for dye-sensitized solar cells (DSSC) leading to a new class of hybrid semiconductor photovoltaic cells (HSPC). Thanks to density functional theory calculations, we show that the band gap of these compounds is dominated by a giant spin-orbit coupling (SOC) in the conduction-band (CB). At room temperature, direct and isotropic optical transitions are associated to a spin-orbit split-off band related to the triply degenerated CB of the cubic lattice without SOC. Due to the strong SOC, the electronic states involved in the optical absorption are only slightly perturbed by local distortions of the lattice. In addition, band offset calculations confirm that CH3NH3PbX3/TiO2 is a reference material for driving electrons toward the electrode in HSPC. Two-dimensional (2D) hybrids are also suggested to reach further flexibility for light conversion efficiency. Our study affords the basic concepts to reach the level of knowledge already attained for optoelectronic properties of conventional semiconductors
    • 

    corecore