29 research outputs found

    The SORL1 gene and convergent neural risk for Alzheimer\u27s disease across the human lifespan

    Get PDF
    Prior to intervention trials in individuals genetically at-risk for late-onset Alzheimer\u27s disease, critical first steps are identifying where (neuroanatomic effects), when (timepoint in the lifespan) and how (gene expression and neuropathology) Alzheimer\u27s risk genes impact the brain. We hypothesized that variants in the sortilin-like receptor (SORL1) gene would affect multiple Alzheimer\u27s phenotypes before the clinical onset of symptoms. Four independent samples were analyzed to determine effects of SORL1 genetic risk variants across the lifespan at multiple phenotypic levels: (1) microstructural integrity of white matter using diffusion tensor imaging in two healthy control samples (n = 118, age 18-86; n = 68, age 8-40); (2) gene expression using the Braincloud postmortem healthy control sample (n = 269, age 0-92) and (3) Alzheimer\u27s neuropathology (amyloid plaques and tau tangles) using a postmortem sample of healthy, mild cognitive impairment (MCI) and Alzheimer\u27s individuals (n = 710, age 66-108). SORL1 risk variants predicted lower white matter fractional anisotropy in an age-independent manner in fronto-temporal white matter tracts in both samples at 5% family-wise error-corrected thresholds. SORL1 risk variants also predicted decreased SORL1 mRNA expression, most prominently during childhood and adolescence, and significantly predicted increases in amyloid pathology in postmortem brain. Importantly, the effects of SORL1 variation on both white matter microstructure and gene expression were observed during neurodevelopmental phases of the human lifespan. Further, the neuropathological mechanism of risk appears to primarily involve amyloidogenic pathways. Interventions targeted toward the SORL1 amyloid risk pathway may be of greatest value during early phases of the lifespan

    Catechol-O-Methyltransferase Val158Met Polymorphism and Clinical Response to Antipsychotic Treatment in Schizophrenia and Schizo-Affective Disorder Patients: a Meta-Analysis

    Get PDF
    BACKGROUND: The catechol-O-methyltransferase (COMT) enzyme plays a crucial role in dopamine degradation, and the COMT Val158Met polymorphism (rs4680) is associated with significant differences in enzymatic activity and consequently dopamine concentrations in the prefrontal cortex. Multiple studies have analyzed the COMT Val158Met variant in relation to antipsychotic response. Here, we conducted a meta-analysis examining the relationship between COMT Val158Met and antipsychotic response. METHODS: Searches using PubMed, Web of Science, and PsycInfo databases (03/01/2015) yielded 23 studies investigating COMT Val158Met variation and antipsychotic response in schizophrenia and schizo-affective disorder. Responders/nonresponders were defined using each study's original criteria. If no binary response definition was used, authors were asked to define response according to at least 30% Positive and Negative Syndrome Scale score reduction (or equivalent in other scales). Analysis was conducted under a fixed-effects model. RESULTS: Ten studies met inclusion criteria for the meta-analysis. Five additional antipsychotic-treated samples were analyzed for Val158Met and response and included in the meta-analysis (ntotal=1416). Met/Met individuals were significantly more likely to respond than Val-carriers (P=.039, ORMet/Met=1.37, 95% CI: 1.02-1.85). Met/Met patients also experienced significantly greater improvement in positive symptoms relative to Val-carriers (P=.030, SMD=0.24, 95% CI: 0.024-0.46). Posthoc analyses on patients treated with atypical antipsychotics (n=1207) showed that Met/Met patients were significantly more likely to respond relative to Val-carriers (P=.0098, ORMet/Met=1.54, 95% CI: 1.11-2.14), while no difference was observed for typical-antipsychotic-treated patients (n=155) (P=.65). CONCLUSIONS: Our findings suggest that the COMT Val158Met polymorphism is associated with response to antipsychotics in schizophrenia and schizo-affective disorder patients. This effect may be more pronounced for atypical antipsychotics.C.C.Z. is supported by the Brain and Behavior Research Foundation, American Foundation for Suicide Prevention and Eli Lilly. D.F. is supported by the Vanier Canada Graduate Scholarship. D.J.M. has been or is supported by the Canadian Institute of Health Research (CIHR) Operating Grant: “Genetics of antipsychotic-induced metabolic syndrome,” Michael Smith New Investigator Salary Prize for Research in Schizophrenia, NARSAD Independent Investigator Award by the Brain & Behavior Research Foundation, and Early Researcher Award from Ministry of Research and Innovation of Ontario. E.H. is supported by the Canada Graduate Scholarship. H.Y.M. has grant support from Sumitomo Dainippon, Sunovion, Boehringer Ingelheim, Eli Lilly, Janssen, Reviva, Alkermes, Auspex, and FORUM. J.A.L. has received research funding from Alkermes, Biomarin, EnVivo/Forum, Genentech, and Novartis. J.L.K. is supported the CIHR grant “Strategies for gene discovery in schizophrenia: subphenotypes, deep sequencing and interaction.” J.R.B. is supported by NIH grant MH083888. A.K.T. is supported by a NARSAD Young Investigator Award. J.S. is supported by a Pfizer independent grant. P.M. receives salary from Clinica Universidad de Navarra and has received research grants from the Ministry of Education (Spain), the Government of Navarra (Spain), the Spanish Foundation of Psychiatry and Mental Health, and Astrazeneca. S.G. is supported by the Ningbo Medical Technology Project Fund (No. 2004050), the Natural Science Foundation of Ningbo (No. 2009A610186, No. 2013A610249), and the Zhejiang Provincial Medical and Health Project Fund (No. 2015127713). S.G.P. has received research support from Otsuka, Lundbeck, FORUM, and Alkermes

    Opposing brain signatures of sleep in task-based and resting-state conditions

    No full text
    Abstract Sleep and depression have a complex, bidirectional relationship, with sleep-associated alterations in brain dynamics and structure impacting a range of symptoms and cognitive abilities. Previous work describing these relationships has provided an incomplete picture by investigating only one or two types of sleep measures, depression, or neuroimaging modalities in parallel. We analyze the correlations between brainwide neural signatures of sleep, cognition, and depression in task and resting-state data from over 30,000 individuals from the UK Biobank and Human Connectome Project. Neural signatures of insomnia and depression are negatively correlated with those of sleep duration measured by accelerometer in the task condition but positively correlated in the resting-state condition. Our results show that resting-state neural signatures of insomnia and depression resemble that of rested wakefulness. This is further supported by our finding of hypoconnectivity in task but hyperconnectivity in resting-state data in association with insomnia and depression. These observations dispute conventional assumptions about the neurofunctional manifestations of hyper- and hypo-somnia, and may explain inconsistent findings in the literature

    Limited Evidence for Association of Genome-Wide Schizophrenia Risk Variants on Cortical Neuroimaging Phenotypes

    No full text
    BACKGROUND: There are now over 100 established genetic risk variants for schizophrenia; however, their influence on brain structure and circuitry across the human lifespan are not known. METHODS: We examined healthy individuals 8-86 years of age, from the Centre for Addiction and Mental Health, the Zucker Hillside Hospital, and the Philadelphia Neurodevelopmental Cohort. Following thorough quality control procedures, we investigated associations of established genetic risk variants with heritable neuroimaging phenotypes relevant to schizophrenia, namely thickness of frontal and temporal cortical regions (n = 565) and frontotemporal and interhemispheric white matter tract fractional anisotropy (FA) (n = 530). RESULTS: There was little evidence for association of risk variants with imaging phenotypes. No association with cortical thickness of any region was present. Only rs12148337, near a long noncoding RNA region, was associated with white matter FA (splenium of corpus callosum) following multiple comparison correction (corrected p = .012); this single nucleotide polymorphism was also associated with genu FA and superior longitudinal fasciculus FA at

    Polygenic Risk Score for Alzheimer's Disease in Caribbean Hispanics

    No full text
    OBJECTIVE: Polygenic risk scores (PRSs) assess the individual genetic propensity to a condition by combining sparse information scattered across genetic loci, often displaying small effect sizes. Most PRSs are constructed in European-ancestry populations, limiting their use in other ethnicities. Here we constructed and validated a PRS for late-onset Alzheimer’s Disease (LOAD) in Caribbean Hispanics (CH). METHODS: We used a CH discovery (n = 4,312) and independent validation sample (n = 1,850) to construct an ancestry-specific PRS (“CH-PRS”) and evaluated its performance alone and with other predictors using the area under curve (AUC) and logistic regression (strength of association with LOAD and statistical significance). We tested if CH-PRS predicted conversion to LOAD in a subsample with longitudinal data (n = 1,239). We also tested the CH-PRS in an independent replication CH cohort (n = 200) and brain autopsy cohort (n = 33). Finally, we tested the effect of ancestry on PRS by using European and African American discovery cohorts to construct alternative PRSs (“EUR-PRS”, “AA-PRS”). RESULTS: The full model (LOAD ~ CH-PRS + sex + age + APOE-ϵ4), achieved an AUC = 74% (OR(CH-PRS) = 1.51 95% CI = 1.36–1.68), raising to >75% in APOE-ϵ4 non-carriers. CH-PRS alone achieved an AUC = 72% in the autopsy cohort, raising to AUC = 83% in full model. Higher CH-PRS was significantly associated with clinical LOAD in the replication CH cohort (OR = 1.61, 95%CI = 1.19–2.17) and significantly predicted conversion to LOAD (HR = 1.93, CI = 1.70–2.20) in the longitudinal subsample. EUR-PRS and AA-PRS reached lower prediction accuracy (AUC = 58% and 53%, respectively). INTERPRETATION: Enriching diversity in genetic studies is critical to provide an effective PRS in profiling LOAD risk across populations

    The Parkinson’s disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability

    No full text
    Alpha-synuclein (αS) is a conformationally plastic protein that reversibly binds to cellular membranes. It aggregates and is genetically linked to Parkinson's disease (PD). Here, we show that αS directly modulates processing bodies (P-bodies), membraneless organelles that function in mRNA turnover and storage. The N terminus of αS, but not other synucleins, dictates mutually exclusive binding either to cellular membranes or to P-bodies in the cytosol. αS associates with multiple decapping proteins in close proximity on the Edc4 scaffold. As αS pathologically accumulates, aberrant interaction with Edc4 occurs at the expense of physiologic decapping-module interactions. mRNA decay kinetics within PD-relevant pathways are correspondingly disrupted in PD patient neurons and brain. Genetic modulation of P-body components alters αS toxicity, and human genetic analysis lends support to the disease-relevance of these interactions. Beyond revealing an unexpected aspect of αS function and pathology, our data highlight the versatility of conformationally plastic proteins with high intrinsic disorder
    corecore