714 research outputs found
Shortcuts to high symmetry solutions in gravitational theories
We apply the Weyl method, as sanctioned by Palais' symmetric criticality
theorems, to obtain those -highly symmetric -geometries amenable to explicit
solution, in generic gravitational models and dimension. The technique consists
of judiciously violating the rules of variational principles by inserting
highly symmetric, and seemingly gauge fixed, metrics into the action, then
varying it directly to arrive at a small number of transparent, indexless,
field equations. Illustrations include spherically and axially symmetric
solutions in a wide range of models beyond D=4 Einstein theory; already at D=4,
novel results emerge such as exclusion of Schwarzschild solutions in cubic
curvature models and restrictions on ``independent'' integration parameters in
quadratic ones. Another application of Weyl's method is an easy derivation of
Birkhoff's theorem in systems with only tensor modes. Other uses are also
suggested.Comment: 10 page
The Principle of Symmetric Criticality in General Relativity
We consider a version of Palais' Principle of Symmetric Criticality (PSC)
that is applicable to the Lie symmetry reduction of Lagrangian field theories.
PSC asserts that, given a group action, for any group-invariant Lagrangian the
equations obtained by restriction of Euler-Lagrange equations to
group-invariant fields are equivalent to the Euler-Lagrange equations of a
canonically defined, symmetry-reduced Lagrangian. We investigate the validity
of PSC for local gravitational theories built from a metric. It is shown that
there are two independent conditions which must be satisfied for PSC to be
valid. One of these conditions, obtained previously in the context of
transverse symmetry group actions, provides a generalization of the well-known
unimodularity condition that arises in spatially homogeneous cosmological
models. The other condition seems to be new. The conditions that determine the
validity of PSC are equivalent to pointwise conditions on the group action
alone. These results are illustrated with a variety of examples from general
relativity. It is straightforward to generalize all of our results to any
relativistic field theory.Comment: 46 pages, Plain TeX, references added in revised versio
Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations
Killing vector fields in three dimensions play important role in the
construction of the related spacetime geometry. In this work we show that when
a three dimensional geometry admits a Killing vector field then the Ricci
tensor of the geometry is determined in terms of the Killing vector field and
its scalars. In this way we can generate all products and covariant derivatives
at any order of the ricci tensor. Using this property we give ways of solving
the field equations of Topologically Massive Gravity (TMG) and New Massive
Gravity (NMG) introduced recently. In particular when the scalars of the
Killing vector field (timelike, spacelike and null cases) are constants then
all three dimensional symmetric tensors of the geometry, the ricci and einstein
tensors, their covariant derivatives at all orders, their products of all
orders are completely determined by the Killing vector field and the metric.
Hence the corresponding three dimensional metrics are strong candidates of
solving all higher derivative gravitational field equations in three
dimensions.Comment: 25 pages, some changes made and some references added, to be
published in Classical and Quantum Gravit
Semiclassical States in Quantum Cosmology: Bianchi I Coherent States
We study coherent states for Bianchi type I cosmological models, as examples
of semiclassical states for time-reparametrization invariant systems. This
simple model allows us to study explicitly the relationship between exact
semiclassical states in the kinematical Hilbert space and corresponding ones in
the physical Hilbert space, which we construct here using the group averaging
technique. We find that it is possible to construct good semiclassical physical
states by such a procedure in this model; we also discuss the sense in which
the original kinematical states may be a good approximation to the physical
ones, and the situations in which this is the case. In addition, these models
can be deparametrized in a natural way, and we study the effect of time
evolution on an "intrinsic" coherent state in the reduced phase space, in order
to estimate the time for this state to spread significantly.Comment: 21 pages, 1 figure; Version to be published in CQG; The discussion
has been slightly reorganized, two references added, and some typos correcte
Critical review of methodology and application of risk ranking for prioritisation of food and feed related issues, on the basis of the size of anticipated health impact
On post-Lie algebras, Lie--Butcher series and moving frames
Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on
differential manifolds. They have been studied extensively in recent years,
both from algebraic operadic points of view and through numerous applications
in numerical analysis, control theory, stochastic differential equations and
renormalization. Butcher series are formal power series founded on pre-Lie
algebras, used in numerical analysis to study geometric properties of flows on
euclidean spaces. Motivated by the analysis of flows on manifolds and
homogeneous spaces, we investigate algebras arising from flat connections with
constant torsion, leading to the definition of post-Lie algebras, a
generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately
associated with euclidean geometry, post-Lie algebras occur naturally in the
differential geometry of homogeneous spaces, and are also closely related to
Cartan's method of moving frames. Lie--Butcher series combine Butcher series
with Lie series and are used to analyze flows on manifolds. In this paper we
show that Lie--Butcher series are founded on post-Lie algebras. The functorial
relations between post-Lie algebras and their enveloping algebras, called
D-algebras, are explored. Furthermore, we develop new formulas for computations
in free post-Lie algebras and D-algebras, based on recursions in a magma, and
we show that Lie--Butcher series are related to invariants of curves described
by moving frames.Comment: added discussion of post-Lie algebroid
- …
