714 research outputs found

    Shortcuts to high symmetry solutions in gravitational theories

    Get PDF
    We apply the Weyl method, as sanctioned by Palais' symmetric criticality theorems, to obtain those -highly symmetric -geometries amenable to explicit solution, in generic gravitational models and dimension. The technique consists of judiciously violating the rules of variational principles by inserting highly symmetric, and seemingly gauge fixed, metrics into the action, then varying it directly to arrive at a small number of transparent, indexless, field equations. Illustrations include spherically and axially symmetric solutions in a wide range of models beyond D=4 Einstein theory; already at D=4, novel results emerge such as exclusion of Schwarzschild solutions in cubic curvature models and restrictions on ``independent'' integration parameters in quadratic ones. Another application of Weyl's method is an easy derivation of Birkhoff's theorem in systems with only tensor modes. Other uses are also suggested.Comment: 10 page

    The Principle of Symmetric Criticality in General Relativity

    Get PDF
    We consider a version of Palais' Principle of Symmetric Criticality (PSC) that is applicable to the Lie symmetry reduction of Lagrangian field theories. PSC asserts that, given a group action, for any group-invariant Lagrangian the equations obtained by restriction of Euler-Lagrange equations to group-invariant fields are equivalent to the Euler-Lagrange equations of a canonically defined, symmetry-reduced Lagrangian. We investigate the validity of PSC for local gravitational theories built from a metric. It is shown that there are two independent conditions which must be satisfied for PSC to be valid. One of these conditions, obtained previously in the context of transverse symmetry group actions, provides a generalization of the well-known unimodularity condition that arises in spatially homogeneous cosmological models. The other condition seems to be new. The conditions that determine the validity of PSC are equivalent to pointwise conditions on the group action alone. These results are illustrated with a variety of examples from general relativity. It is straightforward to generalize all of our results to any relativistic field theory.Comment: 46 pages, Plain TeX, references added in revised versio

    Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations

    Get PDF
    Killing vector fields in three dimensions play important role in the construction of the related spacetime geometry. In this work we show that when a three dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the ricci tensor. Using this property we give ways of solving the field equations of Topologically Massive Gravity (TMG) and New Massive Gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three dimensional symmetric tensors of the geometry, the ricci and einstein tensors, their covariant derivatives at all orders, their products of all orders are completely determined by the Killing vector field and the metric. Hence the corresponding three dimensional metrics are strong candidates of solving all higher derivative gravitational field equations in three dimensions.Comment: 25 pages, some changes made and some references added, to be published in Classical and Quantum Gravit

    Semiclassical States in Quantum Cosmology: Bianchi I Coherent States

    Full text link
    We study coherent states for Bianchi type I cosmological models, as examples of semiclassical states for time-reparametrization invariant systems. This simple model allows us to study explicitly the relationship between exact semiclassical states in the kinematical Hilbert space and corresponding ones in the physical Hilbert space, which we construct here using the group averaging technique. We find that it is possible to construct good semiclassical physical states by such a procedure in this model; we also discuss the sense in which the original kinematical states may be a good approximation to the physical ones, and the situations in which this is the case. In addition, these models can be deparametrized in a natural way, and we study the effect of time evolution on an "intrinsic" coherent state in the reduced phase space, in order to estimate the time for this state to spread significantly.Comment: 21 pages, 1 figure; Version to be published in CQG; The discussion has been slightly reorganized, two references added, and some typos correcte

    On post-Lie algebras, Lie--Butcher series and moving frames

    Full text link
    Pre-Lie (or Vinberg) algebras arise from flat and torsion-free connections on differential manifolds. They have been studied extensively in recent years, both from algebraic operadic points of view and through numerous applications in numerical analysis, control theory, stochastic differential equations and renormalization. Butcher series are formal power series founded on pre-Lie algebras, used in numerical analysis to study geometric properties of flows on euclidean spaces. Motivated by the analysis of flows on manifolds and homogeneous spaces, we investigate algebras arising from flat connections with constant torsion, leading to the definition of post-Lie algebras, a generalization of pre-Lie algebras. Whereas pre-Lie algebras are intimately associated with euclidean geometry, post-Lie algebras occur naturally in the differential geometry of homogeneous spaces, and are also closely related to Cartan's method of moving frames. Lie--Butcher series combine Butcher series with Lie series and are used to analyze flows on manifolds. In this paper we show that Lie--Butcher series are founded on post-Lie algebras. The functorial relations between post-Lie algebras and their enveloping algebras, called D-algebras, are explored. Furthermore, we develop new formulas for computations in free post-Lie algebras and D-algebras, based on recursions in a magma, and we show that Lie--Butcher series are related to invariants of curves described by moving frames.Comment: added discussion of post-Lie algebroid
    corecore