188 research outputs found

    Value Compression of Pattern Databases

    Get PDF
    One common pattern database compression technique is to merge adjacent database entries and store the minimum of merged entries to maintain heuristic admissibility. In this paper we propose a compression technique that preserves every entry, but reduces the number of bits used to store each entry, therefore limiting the values that can be represented. Even when this technique throws away low values in the heuristic, it can still have better performance than the traditional approach. We develop a theoretical basis for selecting which values to keep and show improved performance in both unidirectional and bidirectional search

    Tightest Admissible Shortest Path

    Full text link
    The shortest path problem in graphs is fundamental to AI. Nearly all variants of the problem and relevant algorithms that solve them ignore edge-weight computation time and its common relation to weight uncertainty. This implies that taking these factors into consideration can potentially lead to a performance boost in relevant applications. Recently, a generalized framework for weighted directed graphs was suggested, where edge-weight can be computed (estimated) multiple times, at increasing accuracy and run-time expense. We build on this framework to introduce the problem of finding the tightest admissible shortest path (TASP); a path with the tightest suboptimality bound on the optimal cost. This is a generalization of the shortest path problem to bounded uncertainty, where edge-weight uncertainty can be traded for computational cost. We present a complete algorithm for solving TASP, with guarantees on solution quality. Empirical evaluation supports the effectiveness of this approach.Comment: arXiv admin note: text overlap with arXiv:2208.1148
    • …
    corecore