
On Variable Dependencies and Compressed Pattern Databases

Malte Helmert
Dept. of Math. and Computer Science

Universität Basel
Basel, Switzerland

malte.helmert@unibas.ch

Nathan R. Sturtevant
Dept. of Computer Science

University of Denver
Denver, CO, USA

sturtevant@cs.du.edu

Ariel Felner
Dept. of Information System Engineering

Ben Gurion University
Beer-Sheva, Israel
felner@bgu.ac.il

Abstract

Pattern databases are among the strongest known heuristics
for many classical search benchmarks such as sliding-tile
puzzles, the 4-peg Towers of Hanoi puzzles, Rubik’s Cube,
and TopSpin. Min-compression is a generally applicable tech-
nique for augmenting pattern database heuristics that has
led to marked experimental improvements in some settings,
while being ineffective in others. We provide a theoretical ex-
planation for these experimental phenomena by studying the
interaction between the ranking function used to order ab-
stract states in a pattern database, the compression scheme
used to abstract states, and the dependencies between state
variables in the problem representation.

Introduction

Most current algorithms for optimal state-space search are
based on two ingredients: a systematic search algorithm
from the A* family of algorithms (e.g., Hart, Nilsson, and
Raphael 1968; Korf 1985) and an admissible heuristic func-
tion (e.g., Hart, Nilsson, and Raphael 1968; Pearl 1984). Re-
garding heuristic functions, pattern databases (PDBs), due
to Culberson and Schaeffer (1996), are perhaps the most
widely used ones, as they have shown to be very informative
(e.g., Culberson and Schaeffer 1998; Korf and Felner 2002)
and are immediately applicable in all state spaces that can be
described in a factored (state-variable-based) representation
(e.g., Edelkamp 2001).

Because of these attractive properties, PDB heuristics
have been studied in depth by the heuristic search commu-
nity, and a large body work has been published on improve-
ments, variations and generalizations of the basic approach.
Because memory limitations are the main obstacle towards
the development of better PDB heuristics, a significant
amount of work has dealt with the question of PDB com-
pression in one form or another, including both lossless (e.g.,
Edelkamp 2002; Ball and Holte 2008; Breyer and Korf 2010;
Sadeqi and Hamilton 2016) and lossy approaches (e.g.,
Felner et al. 2007; Sturtevant, Felner, and Helmert 2014;
2017).

One commonly used lossy compression technique that al-
lows partially circumventing the memory limitations of PDB

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristics is min-compression: first, generate a very large
PDB, for example using external search techniques, which
is too large to be used directly during search. Then, com-
press this PDB into a smaller one that fits into main memory
by combining multiple entries of the large PDB into a single
entry containing the minimum of the combined entries. The
compressed PDB represents an admissible (but not necessar-
ily consistent) heuristic that can then be used during search.

A well-known example of min-compression is compress-
ing the blank in the sliding-tile puzzle, where an initial PDB
is calculated while taking into account the position of the
blank tile, but all PDB entries that only differ in the blank
position are then min-compressed into one entry. Experi-
ments with min-compression have been reported for most
of the common benchmark problems in heuristic search,
with widely varying results. Sturtevant, Felner, and Helmert
(2014) summarize the earlier results in the literature as fol-
lows:

“This approach worked very well for the 4-peg Towers
of Hanoi, for instance, but its success for the sliding tile
puzzles was limited and no significant advantage was
reported for the Top-Spin domain (Felner et al. 2007).”

In this short paper, we aim to provide a theoretical ex-
planation of this experimentally observed behavior. Specifi-
cally, we aim to answer the following questions:

Q1. Under which conditions is min-compression benefi-
cial? Can we guarantee that min-compressing a large
PDB to size N leads to a heuristic which is at least as
good as directly using a PDB of size N?

Q2. Why does min-compression lead to large improve-
ments in the 4-peg Towers of Hanoi, moderate improve-
ments in the sliding tile puzzles, and no improvement
in TopSpin?

Q3. How do these results generalize to other domains?

Our study is purely theoretical: we provide no new algo-
rithms and no new experiments. Rather, our aim is to better
understand the existing algorithms and experiments reported
in the literature. In doing so, we hope to provide insights on
which future work on compressed PDB heuristics and re-
lated techniques can build.

Proceedings of the Tenth International Symposium on Combinatorial Search (SoCS 2017)

129

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by edoc

https://core.ac.uk/display/154351488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

State Spaces

We assume that states in the state spaces we consider are
expressed as tuples over a finite set of finite-domain state
variables V , and that pattern database heuristics are based
on abstracting the state space by projecting to a subset of
state variables P ⊆ V . This covers typical state space
representations and pattern databases for classical bench-
marks such as the 15-puzzle, the 4-peg towers of Hanoi,
TopSpin, Rubik’s Cube, but also general representation for-
malisms such as SAS+ (Bäckström and Nebel 1995) and
PSVN (Hernádvölgyi and Holte 1999).

For example, a state in the 15-puzzle can be represented
as a tuple 〈p0, . . . , p15〉 where pi encodes the position of tile
i, where p0 is the blank position. A state in TopSpin can be
represented as a tuple of positions for each token. A state in
Towers of Hanoi can be represented as a tuple of positions
for each disk.

In some cases, an inverse (dual) representation exists: for
example, a 15-puzzle state can alternatively be represented
as a tuple where the i-th entry gives the tile at the i-th posi-
tion, rather than the position of the i-th tile. Which of the two
forms is appropriate depends on the intended use: for exam-
ple, for PDB heuristics based on ignoring certain tiles, we
need a representation with one state variable per tile. One
could alternatively ignore certain positions, in which case
the dual representation would be appropriate.

Certain combinations of assignments to state variables
may be illegal. For example, in the 15-puzzle, no two tiles
can occupy the same position, so all states with pi = pj
for some i �= j are illegal. In a general representation like
SAS+, such constraints can be derived or imposed as in-
variants. Haslum, Bonet, and Geffner (2005) describe how
constrained PDBs can exploit such invariants to strengthen
PDB heuristics.

Formally, a state space for state variables V is given by:

• a set S of assignments to V called the (legal) states,

• a set T ⊆ S ×S ×R
+
0 of (state) transitions, each with an

associated cost,

• an initial state sinit ∈ S, and

• a set of goal states Sgoal ⊆ S.

We write transitions in arrow notation as s
c−→ s′ to de-

note a transition from s to s′ with cost c and omit c where it
does not matter. We assume familiarity with common heuris-
tic search concepts such as heuristics, admissibility, consis-
tency, dominance, and the perfect heuristic h∗.

Pattern Database Heuristics

Given a subset of state variables P ⊆ V (a pattern), the
projection πP is a function that takes a state s ∈ S and dis-
cards all information about state variables not in P . It in-
duces an abstract state space, which is a state space over
state variables P with states {πP (s) | s ∈ S}, transitions
{πP (s)

c−→ πP (s
′) | s c−→ s′ ∈ T}, initial state πP (sinit) and

goal states {πP (s) | s ∈ Sgoal}. The heuristic hP associated
with πP is defined by hP (s) = h∗(πP (s)), i.e., the optimal
solution cost (in the abstract space) of the projection of s.

Let SP be the set of abstract states under projection πP .
The most common way of implementing hP is to use a rank-
ing function (minimal perfect hash function) rankP : SP →
{0, . . . , |SP |−1} (e.g., Bonet 2008) to map abstract states to
a contiguous range of integers, and then use a 1-dimensional
array (table) TP to store the corresponding heuristic values.
That is, TP [i] stores h∗(sP), where sP is the uniquely de-
fined abstract state with rankP (sP) = i. Such tables are
called pattern databases, which is why the overall heuristic
is called a pattern database heuristic. In summary, we have

hP (s) = TP [rankP (πP (s))],

where in practice the combined projection and ranking func-
tion rankP ◦ πP is often computed in one step.

Compressed Pattern Database Heuristics

The idea of (min-)compressed PDB heuristics is to com-
bine multiple PDB entries into one table entry in order to
reduce the memory requirements of the heuristic (Felner et
al. 2007).1 Consider a PDB TP with N entries and rank-
ing function rankP , let M ≤ N , and consider a surjec-
tive rank compression function comp : {0, . . . , N − 1} →
{0, . . . ,M − 1} that reduces the ranks of TP to a smaller
range. We can then define a compressed table T comp

P with
M entries as T comp

P [i] = minr∈comp−1(i) T [r] and define the
compressed PDB heuristic hcomp

P as

hcomp
P (s) = T comp

P [comp(rankP (πP (s)))].

It is easy to verify that hcomp
P is admissible if hP is: in fact,

hcomp
P is (weakly) dominated by hP because for all ranks

r, T comp
P [comp(r)] = minr′∈comp−1(comp(r)) T [r

′] ≤ T [r],
where the inequality holds because r ∈ comp−1(comp(r)).

Observe that while the ranking function is an implemen-
tation detail that does not affect the quality of the heuristic
estimates for a regular PDB heuristic, it has a significant in-
fluence on the heuristic values of a compressed PDB heuris-
tic because the combination of comp and rankP determines
which abstract goal distances are grouped together in the
compressed table. Previous work on compressed PDBs often
discussed the compression function comp used, but rarely
discussed the ranking function. This is not sufficient for the-
oretically analyzing compressed PDB heuristic. We will re-
fer to the combination of ranking and compression function
as the compression regime used by a given compressed PDB
heuristic.

Dominance of Min-Compressed Heuristics

Assume we are faced with the following decision: given a
space budget of M table entries, we can either compute a
(regular) coarse-grained PDB heuristic hC with M entries
based on the pattern C, or we can compute a finer-grained
PDB heuristic hF based on a larger pattern F ⊇ C and

1More recently, this technique has been called entry compres-
sion to distinguish it from another PDB compression technique
called value compression, which reduces the number of bits used
to store each PDB entry rather than the number of table entries
(Sturtevant, Felner, and Helmert 2017).

130

compress it down to size M , obtaining the compressed PDB
heuristic hcomp

F . Which of the two heuristics is preferable?
Clearly, this is a key question in the practical application of
compressed PDB heuristics. So far, this question has only
been studied experimentally.

Because F ⊇ C, hF weakly dominates hC : the coarser
abstraction can be viewed as a further abstraction of the finer
abstraction, and dominance follows from the admissibility
of abstraction heuristics. We say that hF is a refinement of
hC .2 Hence, the question is in which cases the loss in accu-
racy due to compression when moving from hF to hcomp

F is
small enough not to lose the advantage of hF over hC .

For example, let hF be a 13-disk PDB heuristic for 4-peg
Towers of Hanoi, and let hC be an 11-disk PDB that ignores
the smallest two disks considered in F . The PDBs for hcomp

F
and hC have the same size if we compress by a factor of 16.
Which heuristic is stronger?

The key to answering these questions is in the interaction
between the abstraction mappings used to define hF and hC

and the compression regime used by hcomp
F . We say that a

compression regime is compatible with the refinement rela-
tionship between hC and hF if the only states that end up
in the same compressed table entry are those which cannot
be distinguished by the coarser heuristic hC . Formally, this
means that we require the following condition for all states
s and s′:

comp(rankF (πF (s))) = comp(rankF (πF (s
′)))

iff πC(s) = πC(s
′).

This essentially means that the compression function can
be viewed as a further abstraction that, when composed
with the fine-grained abstraction πF , is equivalent to (dis-
tinguishes exactly the same states as) directly applying the
coarse abstraction πC .

When using arbitrary or random ranking or compression
functions, this compatibility relationship is unlikely to hold
because the rank of an abstract state and the resulting com-
pressed table index do not capture any structural aspects of
the abstraction. However, when using lexicographic ranking
based on the representation of an abstract state as a tuple
of values for state variables, the commonly used compres-
sion functions MOD and DIV (with suitable divisors) can
be interpreted in terms of the abstract state structure: if the
last state variable (the one considered least significant in the
lexicographical ordering) can take on k values, then DIV
compression by a factor of k amounts to projecting away the
last state variable, and similarly if the first state variable can
take on k values, then MOD compression to reduce by a fac-
tor of k (i.e., computing the rank modulo N/k) amounts to
projecting away the first state variable.

For example, using lexicographical ranking in the 4-peg
Towers of Hanoi domain, compression DIV 4 or MOD 4
amounts to projecting away one of the disks. Depending on

2The notion of refinement of abstraction heuristics also applies
to more general forms of abstractions than the projections underly-
ing PDBs. Whenever abstraction α can be viewed as a composition
of two functions α1 ◦α2, α2 is a refinement of α. All results in this
paper directly carry over to this more general setting.

the order of state variables, this will typically be the largest
or smallest disk considered in the finer abstraction.

We are now ready to answer question Q1:

Theorem 1. Let hF and hC be heuristics such that hF is
a refinement of hC . Consider compressed heuristics with a
compression regime that is compatible with hF and hC .

Then
hcomp
F (s) ≥ hC(s)

for all states s.

Proof: Consider a state s with hcomp
F (s) = k < ∞. (For

infinite heuristic values, there is nothing to prove, as ∞ ≥
hC(s) always holds.)

From the definition of min-compression, there must be a
state s that is compressed to the same compressed table entry
as s such that hF (s) = hcomp

F (s) = k. This can be any state
in the same compressed table entry as s with minimum hF

value.
From hF (s) = k, the definition of abstraction heuristics

implies that the abstract state space defined by πF has a path
of total cost k from πF (s) to some abstract goal state.

Because πF is a refinement of πC , all abstract paths in
the abstract state space for πF have corresponding abstract
paths in the abstract state space for πC (but not necessarily
vice versa), which implies hC(s) ≤ k = hF (s). Note that
this path does not have to be a shortest path in the abstract
space for πC , hence equality does not have to hold.

Because we have a compatible compression regime, the
only states that are mapped to the same compressed table
entry as s are the ones that πC cannot distinguish from s,
and hence hC(s) = hC(s).

We complete the proof by putting the pieces together:
hcomp
F (s) = hF (s) ≥ hC(s) = hC(s). �
We conclude that with compatible compression regimes,

using a finer abstraction and then compressing it to the size
of a coarser one is never worse in terms of heuristic accuracy
than using the coarser abstraction directly.

Min-Compression and Variable Dependencies

Our previous result suggests that if we take care to use a
compatible compression regime, compressed PDBs are a
universal win over regular PDBs. However, we must be care-
ful: while Theorem 1 shows that in such cases hcomp

F is never
worse than hC , it does not guarantee that it is actually better.

In fact, experiments in standard benchmarks show that in
many cases hcomp

F and hC turn out to be identical. For ex-
ample, experimental equality of these heuristics has been
observed for TopSpin domain with compatible compression
regimes using lexicographical ranking and either DIV or
MOD compression, whereas for 4-peg Towers of Hanoi, one
of these regimes leads to huge improvements of hcomp

F over
hC whereas with the other regime, the two heuristics are
identical. In this section, we attempt to shed some light on
this phenomenon, answering questions Q2 and Q3.

The key to understanding this behavior lies in a notion of
dependency between the state variables of the problem. We
say that state variable u depends on state variable v if a value
change of state variable u can depend on the current value of

131

state variable v in any way. More formally, consider a state
transition s1

c−→ s′1 that changes the value of u, i.e., u takes
on different values in s1 and s′1. We say that u is independent
of v in s1 if for all states s2 that are identical to s1 except for
the value of v, there exists a transition s2

c−→ s′2 such that s′2
is identical to s′1 except (possibly) for the value of v. We say
that u depends on v if there exists any state in which u is not
independent of v.

While this definition of dependencies is semantic (i.e., re-
quires checking all states in the state space), it is closely
related to syntactic constructs in state-space representation
formalisms such as SAS+ and PSVN. Under a SAS+ repre-
sentation, u can only depend on v if there exists some action
modifying u which has a precondition on v. This means that
this notion of variable dependency is closely related to arcs
in causal graphs commonly studied in the planning liter-
ature (e.g., Knoblock 1994; Chen and Giménez 2008). The
main difference is that only precondition-effect relationships
induce dependencies, while arcs in causal graphs are also in-
duced by effect-effect relationships (i.e., two state variables
being modified by the same action).

We can now prove the second main result:
Theorem 2. Consider the patterns F and C with F ⊇ C

in an undirected state space (i.e., for all transitions s c−→ s′,
there exists a transition s′ c−→ s). Let hcomp

F be a compressed
PDB heuristic with a compression regime that is compatible
with the refinement relation between F and C. If no variable
in C depends on any variable in F \ C, then

hcomp
F (s) = hC(s)

for all states s.
Proof: Let F , C and hcomp

F satisfy the prerequisites of the
theorem, and let s be any state. Theorem 1 shows hcomp

F (s) ≥
hC(s), so it remains to show hcomp

F (s) ≤ hC(s). For this it
suffices to show that whenever there exists a sequence of ab-
stract transitions from πC(s) to some goal state πC(sgoal)
under πC , there exists a state s with πC(s) = πC(s) from
which there exists a corresponding sequence of abstract tran-
sitions from πF (s) to πF (sgoal) under πF . (Note that min-
compression puts s and s into the same compressed entry.)

Let s0C → · · · → snC be a sequence of abstract transitions
under πC with s0C = πC(s), siC �= si+1

C for all 0 ≤ i < n,
and snC = πC(sgoal). Because the state space is undirected,
the reverse of this path also exists and has the same cost.

From this reverse path under πC we incrementally con-
struct a corresponding reverse path under the finer abstrac-
tion πF , and by reversing this path again, we obtain the de-
sired path from πF (s) to πF (sgoal) under πF .

The reverse path begins with snF = πF (sgoal), which is
an abstract goal state under πF and is a refinement of snC .
For all 0 < i ≤ n, after constructing siF , we can construct
si−1
F as follows, using the inductive argument that siF is a

refinement of siC : because the transition si−1
C → siC exists

in πC , there must be a transition s→ s′ in the original state
space with πC(s) = si−1

C and πC(s
′) = siC . Because of

undirectedness, there is a transition s′ → s of the same cost.
Because si−1

C �= siC , s′ and s differ in at least one variable

from C. Because all variables in C are independent of all
variables in F \ C, we can change all variables in F \ C
arbitrarily to obtain a new transition s′ → s of the same cost
where πF (s′) = siF and πC(s) = si−1

C . Set si−1
F = πF (s)

to complete the construction. �
It is instructive to compare Theorem 2 to an earlier result

on variable dependencies and the quality of PDB heuris-
tics from the classical planning literature, first proved by
Haslum et al. (2007) and later refined by Pommerening,
Röger, and Helmert (2013). Pommerening et al. show that
the only interesting patterns P in SAS+ planning tasks are
ones where (1) the subgraph CGP of the causal graph in-
duced by P (including both precondition-effect and effect-
effect arcs) is weakly connected, and (2) there is a directed
path in CGP using only precondition-effect arcs from each
variable v ∈ P to some variable mentioned in the goal con-
dition. If condition (1) is violated, the pattern P can be split
into two smaller patterns P1 and P2 with hP = hP1 + hP2 ,
and if condition (2) is violated, there exists a smaller pattern
P ′ with hP ′ = hP .

This “interesting pattern criterion” implies that in SAS+

tasks, Theorem 2 remains true if we replace the condition
that the state space is undirected by the condition that F \C
contains no variables mentioned in the goal condition.

Comparing the interesting pattern criterion to Theorem 2,
we see that neither result entails the other. For example,
on the one hand, Theorem 2 is limited to undirected state
spaces, while the interesting pattern criterion has no such re-
striction. On the other hand, the following section includes
several examples of patterns F ⊆ C where Theorem 2
shows that hcomp

F cannot improve over hC while the inter-
esting pattern criterion provides no useful information.

Discussion

We conclude by discussing the implications of our results
for some classical benchmarks. On the positive side, The-
orem 1 shows that, when care is taken to use a compatible
compression regime, min-compressed PDBs are always at
least as strong as regular PDBs. On the negative side, The-
orem 2 shows that improvements can only be obtained if
the finer abstraction on which the compressed PDB is based
captures a dependency of the coarser abstraction. (Of course
this can also be seen as a positive result to guide the appro-
priate choice of refinement to use for a compressed PDB.)

In the quotation from our introduction, Sturtevant, Felner,
and Helmert (2014) observed that compressed PDBs have
been highly successful for the 4-peg Towers of Hanoi, un-
successful for TopSpin, and modestly successful for sliding-
tile puzzles. We can explain all these results in terms of the
variable dependencies present in these domains.

In the Towers of Hanoi, the state variable representing the
location of disk u depends on the variable representing the
location of disk v iff v is smaller than u. Smaller disks im-
pede the movement of larger disks and hence introduce a
dependency: an action moving a given disk is only appli-
cable if no smaller disks are present on the source or tar-
get peg. However the converse is not true, as larger disks
never impede the movement of smaller disks. Hence, to im-

132

prove a PDB heuristic by compression we must add small
disks to the pattern and compress them away: intuitively,
this captures some additional movements of small disks that
are necessary to make space for large-disk moves. Adding
large disks and compressing them away cannot improve the
heuristic.

This also explains the different results in Towers of Hanoi
with MOD vs. DIV compression: with lexicographical rank-
ing and a typical state representation where the i-th vari-
able represents the disk of size i, DIV compression coincides
with projecting away the largest disks, while MOD compres-
sion coincides with projecting away the smallest disks.

In the TopSpin puzzle, using a state representation where
each state variable encodes the location of one token, there
are no dependencies at all. All actions are precondition-free,
and the location of tile u after applying a given action is not
affected by the location of another tile v. The same holds
true for all pure permutation problems (i.e., problems whose
state spaces are Caley graphs), such as Rubik’s Cube or the
pancake problem. This explains why min-compression does
not lead to improvements in pure permutation puzzles.

In the sliding tile puzzles, all state variables representing
locations of tiles depend on the variable representing the lo-
cation of the blank, because the location of the blank affects
the applicability of actions changing the location of the tiles.
These are the only dependencies: variables representing po-
sitions of different tiles do not depend on each other.

This explains the success of the well-known technique of
compressing the blank in the 15-puzzle: because all vari-
ables depend on the blank, it is beneficial to refine an ab-
straction without the blank to one that includes it and then
compress it away. Because these are the only dependencies
in the puzzle, adding a non-blank state variable and com-
pressing it away would be pointless.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments. This work was supported by the Swiss National Sci-
ence Foundation (SNSF) as part of the project “Reasoning
about Plans and Heuristics for Planning and Combinatorial
Search” (RAPAHPACS), by the National Science Founda-
tion (NSF) under Grant No. 1551406 and by Israel Science
Foundation (ISF) grant #417/13.

References

Bäckström, C., and Nebel, B. 1995. Complexity results
for SAS+ planning. Computational Intelligence 11(4):625–
655.
Ball, M., and Holte, R. C. 2008. The compression power of
symbolic pattern databases. In Proc. ICAPS 2008, 2–11.
Bonet, B. 2008. Efficient algorithms to rank and unrank per-
mutations in lexicographic order. In AAAI 2008 Workshop
on Search in Artificial Intelligence and Robotics, 18–23.
Breyer, T. M., and Korf, R. E. 2010. 1.6-bit pattern
databases. In Proc. AAAI 2010, 39–44.
Chen, H., and Giménez, O. 2008. Causal graphs and struc-
turally restricted planning. In Proc. ICAPS 2008, 36–43.

Culberson, J. C., and Schaeffer, J. 1996. Searching with pat-
tern databases. In Proceedings of the Eleventh Biennial Con-
ference of the Canadian Society for Computational Studies
of Intelligence (CSCSI-96), volume 1081 of LNAI, 402–416.
Springer-Verlag.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001, 84–90.
Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. In Proc. AIPS 2002, 274–283.
Felner, A.; Korf, R. E.; Meshulam, R.; and Holte, R. 2007.
Compressed pattern databases. JAIR 30:213–247.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. In Proc. AAAI
2007, 1007–1012.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Proc.
AAAI 2005, 1163–1168.
Hernádvölgyi, I. T., and Holte, R. C. 1999. PSVN: A vec-
tor representation for production systems. Technical Report
TR-99-04, School of Information Technology and Engineer-
ing, University of Ottawa.
Knoblock, C. A. 1994. Automatically generating abstrac-
tions for planning. AIJ 68(2):243–302.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. AIJ 134(1–2):9–22.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. AIJ 27(1):97–109.
Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the most out of pattern databases for classical planning. In
Proc. IJCAI 2013, 2357–2364.
Sadeqi, M., and Hamilton, H. J. 2016. Efficient representa-
tion of pattern databases using acyclic random hypergraphs.
In Proc. ICAPS 2016, 258–266.
Sturtevant, N. R.; Felner, A.; and Helmert, M. 2014. Ex-
ploiting the Rubik’s cube 12-edge PDB by combining par-
tial pattern databases and Bloom filters. In Proc. SoCS 2014,
175–183.
Sturtevant, N. R.; Felner, A.; and Helmert, M. 2017. Value
compression of pattern databases. In Proc. AAAI 2017, 912–
918.

133

