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Abstract

One common pattern database compression technique is to
merge adjacent database entries and store the minimum of
merged entries to maintain heuristic admissibility. In this pa-
per we propose a compression technique that preserves every
entry, but reduces the number of bits used to store each entry,
therefore limiting the values that can be represented. Even
when this technique throws away low values in the heuris-
tic, it can still have better performance than the traditional
approach. We develop a theoretical basis for selecting which
values to keep and show improved performance in both uni-
directional and bidirectional search.

1 Introduction
On approach to improving heuristic search algorithms, used
to find a paths between states in a state space, is to improve
the heuristic used to guide the search. Algorithms in the A*
family use a cost function of f(n) = g(n) + h(n), where
g(n) is the cost of the least-cost known path to n and h(n)
is an admissible (lower bound) estimation on the remaining
cost to the goal.

Pattern Databases (PDBs) (Culberson and Schaeffer
1996) are memory-based heuristics which store lookup ta-
bles in memory containing the distance to the goal in an
abstracted state space. If the size of the lookup table ex-
ceeds the size of main memory, it is usually compressed to
fit in memory. The most common class of lossy compres-
sion techniques for memory-based heuristics (Felner et al.
2007), denoted here as entry compression (EC), compresses
a group of entries into a single entry by storing the minimum
of the group, guaranteeing admissibility. Entry compression
is very effective in many domains, but it is also very sensi-
tive to how entries are grouped together, which controls the
loss of information from compression.

In this paper we introduce an orthogonal compression
technique called Value Compression (VC). PDB entries are
traditionally stored using sufficient bits to represent every
possible value in the PDB. Unlike EC, VC retains all entries
in the PDB but reduces the number of bits used to store each
entry. VC partitions the range of values into subranges and
stores one value (the minimum) for each subrange. VC can
be used alone or together with EC.
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This paper makes the following contributions. First, we
introduce and describe the idea of VC. Second, we present
an efficient algorithm that, given a distribution of heuristic
values, partitions the VC ranges in a way that maximizes the
average heuristic value. Third, we present extensive exper-
imental results that illustrate the strengths and weaknesses
of VC. We show that the static and dynamic distribution of
heuristic values of the PDB are key for predicting the useful-
ness of VC. When they correlate VC is more effective. VC
is particularly effective when the majority of values in the
PDB fall in a small range, as it can eliminate many of the
other values and still perform well. When heuristics do not
fall in a small range, we show that the distribution of values
in a heuristic can be shifted with delta heuristics. Finally,
we show that VC is particularly effective in the new meet-
in-the-middle (MM) family of bidirectional search algorithms
(Holte et al. 2016) where only high values matter. We pro-
vide experimental results that support these trends.

2 Background

A heuristic h is consistent if, for all states a and b, h(a) ≤
c(a, b)+h(b), where c(a, b) is the cost of a shortest path from
a to b (Felner et al. 2011). Inconsistent heuristics can cause
complications during search, but these can be remedied by
using pathmax or bidirectional pathmax (BPMX) (Felner et
al. 2005) which propagate heuristic values along edges to
smooth local inconsistencies.

A pattern database (PDB) (Culberson and Schaeffer 1996)
is an admissible heuristic built by abstracting the underlying
state space S into an abstract state space S′, usually by ig-
noring some of the details of states in S. The abstract state-
space is usually exponentially smaller than the underlying
search space. The shortest (abstract) distance from any ab-
stract state s′ ∈ S′ to the abstract goal is computed and then
stored in a lookup table – the pattern database. When the
search algorithm arrives at a state s, s is then abstracted into
s′, and s′ is used as an index into the PDB. The value stored
in PDB(s′) is used as an admissible heuristic for s.

PDBs are usually generated in a preprocessing phase and
stored in a lookup table of h-values, with one entry per
abstract state, using a ranking function (e.g., Myrvold and
Ruskey 2001) which maps abstract states to consecutive in-
tegers. Once the PDB is created, it can be used to provide
heuristics for an infinite number of problems, either to the
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same specific goal or to other goal states that can also bene-
fit from the same PDB (e.g., by symmetries etc).

2.1 Compressed PDBs

When a PDB is too large, it can be compressed to fit into
memory, using either lossy or lossless approaches.

A common lossy compression method (Felner et al. 2007)
is denoted here by entry compression. To compress a PDB
with E entries by a factor of f , the entire PDB is divided into
E/f buckets, each containing f entries. The compressed
PDB is of size E/f and only stores one value for each
bucket. To guarantee admissibility, the minimum value of all
entries in the bucket in the original PDB is stored (hence
the term entry compression (EC)). The main challenge is
to minimize the loss of information – we want the com-
pressed heuristic to be as close as possible to the original
uncompressed heuristic. Buckets can be determined deter-
ministically, e.g., using mod or div operators to map states
into buckets (Felner et al. 2007) or randomly, as done in
Compressed Partial Pattern Databases (Anderson, Holte, and
Schaeffer 2007). Div compresses adjacent entries while mod
compresses entries that are E/f entries apart. It is impor-
tant to note that EC might result in an inconsistent heuris-
tic even if the original heuristic was consistent because two
neighboring nodes might have heuristic values there were
compressed to different buckets.

In lossless compression, the challenge is to minimize the
memory needs per entry while preserving the original val-
ues and keeping a reasonable time overhead for the unpack-
ing. Felner et al. (2007) describe a lossless compression
approach which stores the delta over an entry-compressed
PDB. Another lossless compression technique is 1.6 bit
PDBs (Breyer and Korf 2010) that store the PDB values
modulo 3. This value essentially stores whether a state’s
heuristic is larger, smaller or equal to the parent. 1.6 bit
PDBs can only be used on top of a consistent heuristic and
only for undirected and unweighted state spaces.

2.2 Delta Heuristics

Delta heuristics (hΔ) have been used as implementation
tricks, but have not been deeply studied. Let h1 and h2

be two heuristic functions where h1 weakly dominates h2,
i.e., h1(s) ≥ h2(s) for all states s. Then we can de-
fine a (non-negative) delta heuristic (hΔ) by hΔ(s) =
h1(s) − h2(s). Clearly, we can exactly recover h1 using
h1(s) = h2(s) + hΔ(s). A common hΔ is a PDB where
the pattern used for h2 is a strict subset of the pattern used
for h1. A PDB for the 15-puzzle which stores the delta
over Manhattan distance (MD) is a known form of loss-
less compression to reduce the number of bits per PDB en-
try (Felner, Korf, and Hanan 2004; Felner and Adler 2005;
Samadi et al. 2008).

2.3 Meet-in-the-Middle Bidirectional Search

Bidirectional search algorithms interleave a search forward
from the start state (start) and a search backward (i.e. us-
ing reverse operators) from the goal state (goal). There is a
long history of research into bidirectional search algorithms

(Nicholson 1966; Pohl 1969), justified by the potential for
an exponential reduction in the size of a bidirectional search
over a unidirectional search.

The MM algorithm (Holte et al. 2016) is a recently in-
troduced bidirectional search algorithm. MM runs an A*-
like search in both directions but prioritizes nodes in its
open-lists with the priority function pr(n) = max(g(n) +
h(n), 2g(n)) This priority function guarantees that the
search frontiers will meet in the middle. That is, the search
will not expand any nodes with g-cost that exceeds C∗/2
in either direction, where C∗ is the optimal solution cost.
Because it meets in the middle, MM treats the g-cost of a
node as another heuristic; the priority rule can be re-written
as pr(n) = g(n) + max(h(n), g(n)). When g(n) ≥ h(n)
then h(n) does not provide any guidance to the search as
it is dominated by g(n). In order to prune a node because
of the heuristic (i.e., to have pr(n) > C∗) it must be that
h(n) > C∗/2. Heuristic values smaller than C∗/2 can be
treated as 0. VC can take advantage of this fact and com-
press small values to 0 with no loss in performance.

2.4 Top Spin Domain

The (N ,K)-TopSpin puzzle has N tokens arranged in a ring.
Any set of K consecutive tokens can be reversed (rotated
180 degrees in the physical puzzle). The goal state has the
tokens sorted. A q-token PDB abstracts the puzzle by keep-
ing the first q tokens and abstracting away the rest. This puz-
zle will be used as our main testbed because tuning N , K,
and q can create state spaces with different properties.

3 Value Compression

Consider the distribution of values for an 8-token PDB of
the (18,4)-TopSpin puzzle shown in Table 1 (column Total).
This PDB has 1.76 billion entries ranging from 0 to 17. Stor-
ing this PDB losslessly requires at least 5 bits per entry. In
practice, for the purpose of speed and simplicity of memory
access, implementers usually round up the number of bits
to the nearest power of 2, requiring 8 bits per entry in this
case. In this particular PDB, 4 bits would be sufficient for
all values from 0 to 15, and the other 4 bits are used just
to be able to store heuristic values of 16 and 17, which are
very rare (70,654 entries, only 0.004% of the total PDB). Al-
though, we cannot efficiently remove just these entries from
the PDB, we can compress the entire PDB by replacing these
values with 15 as shown in the V C2 column of Table 1.
This reduces the number of bits used for the PDB from 8 to
4, halving memory requirements while hardly affecting the
average heuristic value (it decreases by less than 0.0001).

Consider instead what happens when we apply EC using
div to compress the same PDB by a factor of 2 as shown in
the EC2 column. To compare with the other columns, the
numbers in that column are the total number of entries in the
original PDB that are mapped to the given value (because
EC2 groups pairs of entries together, only even numbers are
seen). The average value here is 11.59, much worse than
V C2 while using the same amount of memory. This shows
the potential benefit of VC.
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1,760MB 880MB 440MB
D Total V C2 VC2h̄ EC2 VC4h̄ EC4
0 1 1 12 2 10,188,753 4
1 11 11 22 40
2 94 94 94 186 340
3 731 731 731 1,430 2,596
4 5,353 5,353 5,353 10,340 18,736
5 37,275 37,275 37,275 70,894 127,756
6 245,468 245,468 245,468 457,304 813,700
7 1,508,099 1,508,099 1,508,099 2,722,458 4,724,408
8 8,391,721 8,391,721 8,391,721 14,408,820 23,870,392
9 40,012,497 40,012,497 40,012,497 63,502,746 190,013,262 97,318,252

10 150,000,765 150,000,765 150,000,765 212,692,340 290,434,356
11 393,482,172 393,482,172 393,482,172 478,114,034 393,482,172 553,276,900
12 612,084,904 612,084,904 612,084,904 601,419,722 1,170,638,373 549,750,508
13 440,655,534 440,655,534 440,655,534 328,304,534 217,340,348
14 110,437,757 110,437,757 110,437,757 59,883,892 26,009,144
15 7,389,524 7,460,178 7,389,524 2,721,910 634,464
16 70,633 70,654 11,924 616
17 21 2

Avg. 11.90 11.90 11.90 11.59 11.38 11.27

Table 1: (18-4)-TopSpin. Distribution of values for different types of compression

3.1 General Description of Value Compression

Using b bits per PDB entry, we can store 2b different heuris-
tic values. The main idea in VC is to compress a range of
values together, storing the minimal value of each range to
preserve admissibility. In the V C2 example above, we com-
press the range {15, . . . , 17} to the value 15.

In general, let R be the range of distinct h values of a
memory-based heuristic such as a PDB. To store this, we
need �log2 |R|� bits per entry. VC partitions range R into
M disjoint contiguous subranges R = R1 ∪ · · · ∪ RM . By
“contiguous” we mean that no value of a given range falls
between the minimum and maximum value in another range.
In the compressed PDB we only store the identity of each
subrange for each entry, requiring �log2 M� bits. Of course
this loses some information: if the heuristic lookup deter-
mines that the heuristic value falls into range Ri, we have to
use the minimum value in Ri as an admissible heuristic. For
example, assume R = {0, . . . , 99}. Without compression,
we need at least 7 bits per entry. One possible value com-
pression groups any 10 consecutive values together: R1 =
{0, . . . , 9}, R2 = {10, . . . , 19}, . . . , R10 = {90, . . . , 99}.
This reduces space usage to 4 bits per entry at the loss of
some heuristic accuracy (e.g., all heuristic values between
30 and 39 are compressed to 30). We expect VC to be partic-
ularly effective when few bits can be used to capture the ma-
jority of the values in the PDB. Similar to EC, VC may cause
the heuristic to be inconsistent if two neighboring states are
mapped to different ranges.

VC can be seen as generalizing the idea of partial pattern
databases (PPDB) (Anderson, Holte, and Schaeffer 2007;
Edelkamp and Kissmann 2008), which only store heuristic
values up to a threshold V , assigning a heuristic value of
V + 1 to all other entries.

3.2 General Optimized Range Partitioning

VC is flexible regarding which values to group together.
There are (|R|−1)!

(|R|−M)!(M−1)! ways to partition a range R into
M nonempty contiguous subranges. (One range must start
at 0 to preserve admissibility.) Which one should be used?
We define an optimal partition as one that maximizes the
average heuristic value of the compressed heuristic among
all possible partitions into M subranges. This is equivalent
to the minimal average loss of information over all values in
the compressed PDB.

We now descibe how to compute an optimal partition,
which we denote by V Ch̄, in time polynomial in |R|
and M . Consider an arbitrary contiguous partition P =
{R1, . . . , RM} of the range R. For k ∈ R, Let N(k) de-
note the number of PDB entries with heuristic value k. The
quality (= cumulative heuristic value) under partition P is:

Quality(P) =
∑
Ri∈P

(∑
k∈Ri

N(k) ·minRi

)
. (1)

In words, we sum over all subranges, and for each subrange
Ri we count how many PDB entries fall into Ri and mul-
tiply the total by the value stored for this range (minRi).
Optimizing quality is equivalent to optimizing the average
heuristic value, as the average is the quality divided by the
number of PDB entries. The quality metric is easier to work
with than the average because it is additive: if we divide a
partition into two parts P = P ′ ∪ P ′′, then we have

Quality(P) = Quality(P ′) + Quality(P ′′). (2)

This additivity property suggests a dynamic programming
approach for finding a partition into M subranges that max-
imizes quality. For any set X and value k ∈ X , we define
X≤k := {x ∈ X | x ≤ k} and X>k := {x ∈ X | x > k}.
Every contiguous partition P of R into M ≥ 2 subranges
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Algorithm 1: Optimal Partitioning
1 OptPart(max h, M)
2 for s = 0 to max h do
3 Pivot[s, 1] = max h;
4 Qual[s, 1] = CalcQ(s, max h);
5 end
6 for m = 2 to M do
7 for s = 0 to max h + 1−m do
8 bestQ = −∞;
9 for p = s to max h + 1−m do

10 currQ = CalcQ(s, p) + Qual[p+ 1, m− 1];
11 if currQ > bestQ then
12 bestQ = currQ;
13 pivot = p;
14 end

15 end
16 Qual[s, m] = bestQ;
17 Pivot[s, m] = pivot;
18 end

19 end

20 end

can be written as P = {R≤p} ∪ P ′ where p is the largest
value of the smallest subrange of P (we call this the pivot of
P), and P ′ is a contiguous partition of R>p.

If P is an optimal partition (one that maximizes
Quality(P) over all partitions of R into M subranges), then
from Quality(P) = Quality({R≤p}) + Quality(P ′), we get
that P ′ must be an optimal partition of R>p into M −1 sub-
ranges. Otherwise, the quality of P could be improved by
replacing this subpartition by another one of higher quality.

For a general range R and M ≥ 1, let OptPart(R,M)
denote an optimal partition of R into at most M sub-
ranges. Clearly, OptPart(R, 1) = {R} for all R. Another
base case is OptPart(∅,M) = ∅ for all M . For R 	= ∅
and M > 1, we obtain OptPart(R,M) by computing
Quality({R≤p}) + Quality(OptPart(R>p,M − 1)) for all
possible p ∈ R. If p ∈ R maximizes this quantity, we can
set OptPart(R,M) = {R≤p}∪OptPart(R>p,M −1). That
is, an optimal solution can be obtained by trying out all pos-
sible pivots p, recursively computing an optimal partition
for each subproblem, and selecting the best partition among
these candidates.

It is easy to see that all subproblems generated when
computing OptPart(R,M) in this fashion are of the form
OptPart(R>p,M

′) for some p ∈ R and some M ′ ∈
{1, . . . ,M}, and hence the total number of subproblems is
bounded by |R| ·M , giving rise to a dynamic programming
algorithm with runtime polynomial in |R| and M .

Algorithm 1 gives pseudo-code for this algorithm. We as-
sume R = {0, . . . ,max h} for some number max h, but
the algorithm can be easily adapted to arbitrary ranges.
Pivot[s,m] and Qual[s,m] store the pivot and quality of par-
titioning the range {s, . . . ,max h} into m subranges. Sub-
procedure CalcQ(s, u) calculates the quality for the subrange
{s, . . . , u}, which is

∑u
k=s N(k) · s. The optimal partition

is then obtained by collecting the pivots from the array.
Table 1 also shows the optimal value compression for
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Figure 1: Distribution curves for (18-4)-TopSpin

Memory EC VC VC-bits Nodes Time
1 1 1 8 3.88M 15.29
0.5 (A) 1 2 4 3.88M 15.32
0.375 1 2.66 3 4.03M 15.44
0.25 (B) 1 4 2 10.39M 33.63
0.5 (A) 2 1 8 7.11M 27.70
0.25 (B) 2 2 4 7.11M 27.88
0.1875 2 2.66 3 7.37M 28.44
0.125 (C) 2 4 2 30.43M 80.04
0.25 (B) 4 1 8 13.75M 51.06
0.125 (C) 4 2 4 13.74M 50.97
0.094 4 2.66 3 14.31M 51.52
0.0625 4 4 2 30.48M 77.68

Table 2: Results for (18-4)-TopSpin

our 8-tile PDB. Column VC2h̄ represents compression by
a factor of 2, i.e., to 4 bits (M = 24 = 16), and col-
umn VC4h̄ is compression by a factor of 4, i.e., to 2 bits
(M = 22 = 4). We see that for VC2h̄, it is optimal to use
the subranges {0, 1}, {16, 17} and singleton ranges {2}, . . . ,
{15}, while for VC4h̄ the optimal subranges are {0, . . . , 8},
{9, 10}, {11} and {12, . . . , 17}. The average heuristic val-
ues for VC2h̄ and VC4h̄ are 11.90 and 11.38, both signifi-
cantly better than entry compression with the same amount
of memory (columns EC2 and EC4).

4 Heuristic Distributions

Two different types of heuristic distributions are described
in the literature (Holte et al. 2006; Felner et al. 2005). In
the context of PDBs the static distribution is the distribution
of values in the PDB, while the dynamic distribution is the
distribution of the heuristic values that are seen during the
process of solving a given problem instance.

For unidirectional searches such as A* or IDA*, the dy-
namic distribution may contain lower values than the static
distribution (see for example (Felner et al. 2011), figure 24,
pp 1592). Holte et al. (2006) explained that for a given f -
value, the search tree expanded by IDA* contains many
more nodes with large g-values and small h-values com-
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pared to nodes with small g-values and large h-values (of
the same f -cost) as there are exponentially more nodes with
high g-values. VCh̄ is calculated (trained) on the static distri-
bution and this should usually be done in the preprocessing
phase when the PDB is built.

4.1 Calculating the Distributions

The user certainly knows the static distribution from the
PDB and can implement VCh̄ in the preprocessing phase.
A key point is that the effectiveness of VCh̄ will increase
when the dynamic distribution correlates with the static dis-
tribution. In this case the optimization of values has selected
the values that are most important for effective search. In-
deed, in many cases the static and dynamic distributions
are known to be close together. For example, using multi-
ple PDBs (Holte et al. 2006) or using inconsistent heuristics
and BPMX (Felner et al. 2011) causes the dynamic distri-
bution to be very close to the static distribution. Therefore,
VCh̄ may be safely used if the two distributions are known to
correlate. But, when the distributions are far apart, the effec-
tiveness of VCh̄ will be weakened. In the remaining sections
we demonstrate this on a number of search scenarios.

If nothing is known about the dynamic distribution one
will need to solve or to sample a set of representative prob-
lem instances in order to learn the dynamic distribution in
a preprocessing phase. Our optimization algorithm may be
applied on top of the dynamic distribution if it is known.

5 Experiments: VC in Unidirectional Search

To begin, we experiment with IDA* (+BPMX) on (18,4)-
TopSpin with a heuristic that takes the maximum of three
8-token PDBs. All the results reported below are averages
over 50 random instances which were created by 200 ran-
dom steps. Running time is reported in seconds.

Five curves are shown for this domain in Figure 1. Notice
that the static distribution of values in the PDB (black curve)
and the dynamic distribution of an IDA* search with that
PDB (blue curve) follow closely. The dotted purple curve
corresponds to the values that are seen during the search
when using V Ch̄ with 8 values (3 bits). This curve tends
to correlate with the dynamic distribution and this is a clear
sign that V Ch̄ will work well here. Not shown is the curve
with 16 values (4 bits) which is almost identical to the dy-
namic distribution. The red curve corresponds to the val-
ues that are seen during the search when using V Ch̄ with
4 values (2 bits). Clearly, now, there is loss of information
which predicts that compressing to 2 bits will be signifi-
cantly weaker compared to 3 or more bits. Nevertheless, we
will compare this to EC shortly.

The rows of Table 2 combine EC and V Ch̄ in different
ways. The first column gives the memory needs relative to
the basic PDB with no compression (using 8 bits per entry).1
Each row is uniquely defined by the EC and VC compression
factors given in the second and third columns (in bold). The

1Breyer and Korf (2010) note that researchers have traditionally
used powers of two when storing PDBs. Our results in Table 2 are
under this assumption.
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Figure 2: Distributions curves for (18-2)-TopSpin

fourth column gives the number of bits used by the VC com-
pression. The last two columns give the number of nodes
expanded and the running time in seconds. Together, these
confirm the trends predicted in Figure 1. For a fixed value
of EC it can be seen that using V Ch̄ and going down from
8 bits to to 4 bits (16 values) and 3 bits (8 values) is bene-
ficial and the loss of information is small. While there is a
jump when going down to 2 bits (4 values), comparing 4x
VC (10.39M nodes) to 4x EC (13.75M nodes) still shows an
advantage for VC. This may be a surprising result, as this
heuristic has no values between 1 and 8. But, BPMX is suf-
ficient to limit the overhead of this compression. (Without
BPMX the number of node expansions increases by two or-
ders of magnitude.)

Rows with memory 0.5, 0.25 and 0.125 are labeled with
A, B and C, respectively. For each of these groups, the
best variant is in bold. For example, for 0.5 memory (group
A, compression factor of 2) V Ch̄ (3.88M) outperforms EC
(7.11M). In fact, even compressing to 0.375 memory (3 bits)
with V Ch̄ outperforms EC2 both in memory and in run-
time. Similarly, for 0.25 when only one method is used,
V Ch̄ (10.39M) outperforms EC (13.75M). For both 0.25 and
0.125, it is always better to compress the last factor of 2 by
V Ch̄ and not by EC. Further compressing this to 3 bits is
still beneficial.

Next, we move to (18,2)-TopSpin. Again we use three 8-
token PDBs (8 bits per entry, 32 values). Figure 2 shows
that the static (black curve) and dynamic (blue curve) dis-
tributions using the original PDB differ greatly. The reason
is that this domain is more difficult than the (18,4)-TopSpin
and its PDB is much weaker. The red curve gives the values
seen during the search by V Ch̄ with four bits trained on the
static distribution. This compressed heuristic is more con-
centrated on high values (around 20) but these are useless in
the search which encounters more low values (in the range
1 . . . 8). Hence, 90% of the states encountered during the
search have had their heuristic value compressed to 0. The
blue dotted curve corresponds to the values seen by V Ch̄
with 4 bits when trained on the dynamic distribution. This
has a better fit with the dynamic distribution, but too many
large values are lost and performance is still poor.

Table 3 shows different ways of compressing this PDB
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MEM EC VC-bits Nodes Time
1 1 8 367,225 0.44

0.5 1 4s 3,645,502 4.18
0.5 1 4d 684,846 0.94
0.5 1 4c 394,603 0.43

0.5 2 8 416,014 0.49

Table 3: Results for (18-2)-TopSpin
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Figure 3: Distributions for the 16-peg Towers of Hanoi

with VC to 4 bits (a factor of 2). 4s/4d is V Ch̄ trained on the
static/dynamic distributions. As predicted 4d outperforms 4s
but they are both have worse performance than EC with the
same amount of memory (last line). Finally, 4c is a manually
tuned range selection which achieves slightly better perfor-
mance than EC.

6 VC on Top of Delta Heuristics

Recall that hΔ = h1 − h2 and that h1 can be recovered by
h1 = h2 + hΔ. Here, we briefly study the question of using
hΔ when the distribution of values in h1 is large. The main
advantage of using hΔ is that it contains a smaller range of
values than h1. This may require fewer bits per entry and
thus reduce memory. In addition, smaller ranges reduce the
loss of information that occurs when performing EC or VC
on hΔ compared to a straight compression of the original
PDB. We have experimental evidence that shows this gen-
eral trend but focus here on applying VC to hΔ.

An ideal domain for using hΔ is the 4-peg Towers of
Hanoi (TOH4) (Korf and Felner 2007). The aim is to move
all discs, one at a time, to the goal peg while never placing a
large disc on top of a small disc. TOH4 has very long solu-
tion lengths and the range of heuristic values is very large.2
We study the the 16-disk TOH4 problem.
h1 is set to be a 14-disk PDB. h2 is generated by an entry

compression of a 14-disk PDB by a factor of 8192. This is
equivalent to compressing the smallest 6.5 discs (Felner et
al. 2007). h2 is still very accurate because in TOH4 the loss-
of-information is still very small. Nevertheless, h1 has 113
values and its static distribution is shown in the black curve

2TOH4 has many cycles so IDA* will not be effective here; A*
with BPMX is required.

Memory EC VC VC-bits Nodes Time
1 1 1 8 2.07M 30.60

0.5 2 1 8 3.55M 55.61
0.5 1 2 4 2.07M 30.93

0.25 4 1 8 5.42M 83.87
0.25 2 2 4 3.55M 55.55
0.25 1 4 2 4.63M 66.46

0.125 4 2 4 5.42M 84.06
0.125 2 4 2 5.19M 79.17

Table 4: MM: (18,4)-TopSpin. EC vs. VC

Mem EC VC bits Nodes Time Nodes Time
(18-6) (18-10)

1 1 1 4 9.00M 163 9.11M 170
0.5 2 1 4 16.27M 316 17.30M 329
0.5 1 2 2 12.48M 224 9.31M 184

0.25 4 1 4 29.76M 636 31.93M 604
0.25 2 2 2 17.68M 330 28.14M 528

0.125 4 2 2 30.09M 626 37.62M 707

Table 5: MM: (18,6) and (18-10)-TopSpin. EC vs. VC

of Figure 3. By contrast, hΔ has only 26 values ranging from
0 to 25 (not shown in the figure). There is not necessarily
a correlation between large hΔ values and large h2 values.
Therefore, the static and dynamic distributions of hΔ are not
necessarily correlated to the original PDB.

The dynamic distribution of values when using h1 is
shown in the figure (thick blue curve) and is not close to the
static distribution. When we tried VC directly on h1, it could
not solve many instances within our time/memory limits be-
cause of the gap between the dynamic and static distribution.
However, performing VC on hΔ is very effective. The thin
orange curve shows that the distribution of values of VC of
hΔ with 4-bits per entry (then added to h2) matches with the
dynamic distribution of the original PDB. We observed this
trend in other domains as well including the 15 puzzle and
TopSpin but we omit the results here.

To summarize the unidirectional research section on
whether to use VC or RC we can provide the following gen-
eral rule: when the static and dynamic distribution correlate
V Ch̄ will be very effective and will tend to outperform EC,
especially when we compress small ranges and not too many
values are lost.

7 Experimental Results: VC for MM

Since MM meets in the middle, only heuristic values that are
larger than C∗/2 may prune nodes that would otherwise be
expanded. Nodes with h(n) ≤ C∗/2 fall into two cases. If
h(n) < g(n), then h(n) is dominated by g(n) in the priority
function and h(n) can be treated as 0. If g(n) ≤ h(n) ≤
C∗/2, then pr(n) = g(n)+h(n) ≤ C∗. Such nodes will be
expanded at some point and their heuristic values can also
be treated as 0. Therefore, for MM low heuristic values may
be fully compressed away by VC without losing anything.

The green curve in Figure 1 shows the dynamic distribu-
tion of h-values that actually influenced the priority func-
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tion, i.e., for nodes where h(n) > g(n). Clearly, while the
static heuristic (black curve) had values ranging from 0 to
17, only h-values of 7 and higher belongs to nodes with
smaller g-values. Furthermore, even some of these h-values
are not important if they are ≤ C∗. The red curve (V Ch̄
trained on the static distribution and compressed to 4 values
(2 bits)) is biased towards the high values and all values ≤ 8
are compressed to 0. This was problematic for unidirectional
search (see the fourth line in Table 2) as it missed many of
the small value. For MM this does not hurt as small values do
not matter, but the large values that really matter are better
preserved.

Table 4 combines EC with the V Ch̄ in different ways on
the (18-4)-TopSpin domain for MM. Rows are grouped ac-
cording to their memory usage and the best variant is shown
in bold. For example, for 0.5 memory, VC was much better
than EC. Similarly, for 0.125 memory, 4x compression by
VC is faster than 4x compression by EC. For 0.25 memory,
still VC alone (4x compression) was better than EC alone
(4x compression) but it is best to combine them, each with a
compression factor of 2.

Table 5 presents similar results on the (18-6)- and (18-
10)-TopSpin domains. Here, the range of heuristic values
was from 0 to 15 and the uncompressed heuristic needed
4 bits. Again, the best variant for a given amount of memory
is in bold. VC outperformed the corresponding EC by up to
a factor of 2.

It is important to note that when C∗ is small many of the
high values of the PDB will never be used and since we com-
pressed away the low values then these will not be seen too.
But, when C∗ is small, the problems are very easy to solve
and the need of a strong heuristic is less important. Strong
heuristics are needed for large values of C∗.

8 Conclusions

We showed that V Ch̄’s effectiveness depends on the corre-
lation between the static and dynamic heuristic distributions.
In many cases, even a sparse set of PDB values used by VC
can outperform standard EC. When the static and dynamic
distribution do not correlate we can either train on the dy-
namic distribution or use a delta PDB and compress the delta
with VC. VC is also valuable in MM where it can compress
PDB values that will never be used in practice. Ultimately,
the magnitude of the gains by VC depend on many proper-
ties of each domain, but VC is an effective way of compress-
ing away extra bits that would otherwise be wasted.
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