143 research outputs found

    Programming chemistry in DNA-addressable bioreactors

    Get PDF
    We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis

    Simbiotics: a multi-scale integrative platform for 3D modeling of bacterial populations

    Get PDF
    Simbiotics is a spatially explicit multiscale modeling platform for the design, simulation and analysis of bacterial populations. Systems ranging from planktonic cells and colonies, to biofilm formation and development may be modeled. Representation of biological systems in Simbiotics is flexible, and user-defined processes may be in a variety of forms depending on desired model abstraction. Simbiotics provides a library of modules such as cell geometries, physical force dynamics, genetic circuits, metabolic pathways, chemical diffusion and cell interactions. Model defined processes are integrated and scheduled for parallel multithread and multi-CPU execution. A virtual lab provides the modeler with analysis modules and some simulated lab equipment, enabling automation of sample interaction and data collection. An extendable and modular framework allows for the platform to be updated as novel models of bacteria are developed, coupled with an intuitive user interface to allow for model definitions with minimal programming experience. Simbiotics can integrate existing standards such as SBML, and process microscopy images to initialize the 3D spatial configuration of bacteria consortia. Two case studies, used to illustrate the platform flexibility, focus on the physical properties of the biosystems modeled. These pilot case studies demonstrate Simbiotics versatility in modeling and analysis of natural systems and as a CAD tool for synthetic biology

    A last-in first-out stack data structure implemented in DNA

    Get PDF
    DNA-based memory systems are being reported with increasing frequency. However, dynamic DNA data structures able to store and recall information in an ordered way, and able to be interfaced with external nucleic acid computing circuits, have so far received little attention. Here we present an in vitro implementation of a stack data structure using DNA polymers. The stack is able to record combinations of two different DNA signals, release the signals into solution in reverse order, and then re-record. We explore the accuracy limits of the stack data structure through a stochastic rule-based model of the underlying polymerisation chemistry. We derive how the performance of the stack increases with the efficiency of washing steps between successive reaction stages, and report how stack performance depends on the history of stack operations under inefficient washing. Finally, we discuss refinements to improve molecular synchronisation and future open problems in implementing an autonomous chemical data structure

    Toward Engineering Biosystems With Emergent Collective Functions

    Get PDF
    Many complex behaviors in biological systems emerge from large populations of interacting molecules or cells, generating functions that go beyond the capabilities of the individual parts. Such collective phenomena are of great interest to bioengineers due to their robustness and scalability. However, engineering emergent collective functions is difficult because they arise as a consequence of complex multi-level feedback, which often spans many length-scales. Here, we present a perspective on how some of these challenges could be overcome by using multi-agent modeling as a design framework within synthetic biology. Using case studies covering the construction of synthetic ecologies to biological computation and synthetic cellularity, we show how multi-agent modeling can capture the core features of complex multi-scale systems and provide novel insights into the underlying mechanisms which guide emergent functionalities across scales. The ability to unravel design rules underpinning these behaviors offers a means to take synthetic biology beyond single molecules or cells and toward the creation of systems with functions that can only emerge from collectives at multiple scales

    Toward engineering biosystems with emergent collective functions

    Get PDF
    Many complex behaviors in biological systems emerge from large populations of interacting molecules or cells, generating functions that go beyond the capabilities of the individual parts. Such collective phenomena are of great interest to bioengineers due to their robustness and scalability. However, engineering emergent collective functions is difficult because they arise as a consequence of complex multi-level feedback, which often spans many length-scales. Here, we present a perspective on how some of these challenges could be overcome by using multi-agent modeling as a design framework within synthetic biology. Using case studies covering the construction of synthetic ecologies to biological computation and synthetic cellularity, we show how multi-agent modeling can capture the core features of complex multi-scale systems and provide novel insights into the underlying mechanisms which guide emergent functionalities across scales. The ability to unravel design rules underpinning these behaviors offers a means to take synthetic biology beyond single molecules or cells and toward the creation of systems with functions that can only emerge from collectives at multiple scales

    Local immune regulation of mucosal inflammation by tacrolimus

    Get PDF
    Purpose: Tacrolimus is a potent immunomodulator that is effective in the treatment of inflammatory bowel disease (IBD). However, potential toxicity and systemic effects with oral intake limit its use. Local tacrolimus treatment is effective in a subgrou

    Autoimmune hemolytic anemia occurred prior to evident nephropathy in a patient with chronic hepatitis C virus infection: case report

    Get PDF
    BACKGROUND: Renal involvement in patients with chronic hepatitis C virus infection has been suggested to be due to a variety of immunological processes. However, the precise mechanism by which the kidneys are damaged in these patients is still unclear. CASE PRESENTATION: A 66 year old man presented with the sudden onset of autoimmune hemolytic anemia. Concomitant with a worsening of hemolysis, his initially mild proteinuria and hemoglobinuria progressed. On admission, laboratory tests revealed that he was positive for hepatitis C virus in his blood, though his liver function tests were all normal. The patient displayed cryoglobulinemia and hypocomplementemia with cold activation, and exhibited a biological false positive of syphilic test. Renal biopsy specimens showed signs of immune complex type nephropathy with hemosiderin deposition in the tubular epithelial cells. CONCLUSIONS: The renal histological findings in this case are consistent with the deposition of immune complexes and hemolytic products, which might have occurred as a result of the patient's underlying autoimmune imbalance, autoimmune hemolytic anemia, and chronic hepatitis C virus infection

    Genetic Association Studies of Copy-Number Variation: Should Assignment of Copy Number States Precede Testing?

    Get PDF
    Recently, structural variation in the genome has been implicated in many complex diseases. Using genomewide single nucleotide polymorphism (SNP) arrays, researchers are able to investigate the impact not only of SNP variation, but also of copy-number variants (CNVs) on the phenotype. The most common analytic approach involves estimating, at the level of the individual genome, the underlying number of copies present at each location. Once this is completed, tests are performed to determine the association between copy number state and phenotype. An alternative approach is to carry out association testing first, between phenotype and raw intensities from the SNP array at the level of the individual marker, and then aggregate neighboring test results to identify CNVs associated with the phenotype. Here, we explore the strengths and weaknesses of these two approaches using both simulations and real data from a pharmacogenomic study of the chemotherapeutic agent gemcitabine. Our results indicate that pooled marker-level testing is capable of offering a dramatic increase in power (-fold) over CNV-level testing, particularly for small CNVs. However, CNV-level testing is superior when CNVs are large and rare; understanding these tradeoffs is an important consideration in conducting association studies of structural variation
    • …
    corecore