93 research outputs found

    Why the government should have nationalized AIG

    Get PDF

    The Fed vs Bloomberg, ST OMO edition

    Get PDF

    A hierarchical Bayesian perspective on majorization-minimization for non-convex sparse regression: Application to M/EEG source imaging

    Get PDF
    Majorization-minimization (MM) is a standard iterative optimization technique which consists in minimizing a sequence of convex surrogate functionals. MM approaches have been particularly successful to tackle inverse problems and statistical machine learning problems where the regularization term is a sparsity-promoting concave function. However, due to non-convexity, the solution found by MM depends on its initialization. Uniform initialization is the most natural and often employed strategy as it boils down to penalizing all coefficients equally in the first MM iteration. Yet, this arbitrary choice can lead to unsatisfactory results in severely under-determined inverse problems such as source imaging with magneto- and electro-encephalography (M/EEG). The framework of hierarchical Bayesian modeling (HBM) is an alternative approach to encode sparsity. This work shows that for certain hierarchical models, a simple alternating scheme to compute fully Bayesian maximum a posteriori (MAP) estimates leads to the exact same sequence of updates as a standard MM strategy (see the adaptive lasso). With this parallel outlined, we show how to improve upon these MM techniques by probing the multimodal posterior density using Markov Chain Monte-Carlo (MCMC) techniques. Firstly, we show that these samples can provide well-informed initializations that help MM schemes to reach better local minima. Secondly, we demonstrate how it can reveal the different modes of the posterior distribution in order to explore and quantify the inherent uncertainty and ambiguity of such ill-posed inference procedure. In the context of M/EEG, each mode corresponds to a plausible configuration of neural sources, which is crucial for data interpretation, especially in clinical contexts. Results on both simulations and real datasets show how the number or the type of sensors affect the uncertainties on the estimates

    SERS of individual nanoparticles on a mirror : size does matter, but so does shape

    Get PDF
    The authors thank Javier Aizpurua (CSIC − UPV/EHU/DIPC) for helpful discussions. We acknowledge financial support from EPSRC Grants EP/G060649/1, EP/K028510/1, EP/L027151/1, ERC Grant LINASS 320503. F.B. acknowledges support from the Winton Programme for the Physics of Sustainability. R.C. acknowledges support from the Dr. Manmohan Singh scholarship from St. John’s College.Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing.Publisher PDFPeer reviewe

    Expanding modes of reflection in design futuring

    Get PDF
    Design futuring approaches, such as speculative design, design fiction and others, seek to (re)envision futures and explore alternatives. As design futuring becomes established in HCI design research, there is an opportunity to expand and develop these approaches. To that end, by reflecting on our own research and examining related work, we contribute five modes of reflection. These modes concern formgiving, temporality, researcher positionality, real-world engagement, and knowledge production. We illustrate the value of each mode through careful analysis of selected design exemplars and provide questions to interrogate the practice of design futuring. Each reflective mode offers productive resources for design practitioners and researchers to articulate their work, generate new directions for their work, and analyze their own and others’ work.

    Effect of aliskiren on post-discharge outcomes among diabetic and non-diabetic patients hospitalized for heart failure: insights from the ASTRONAUT trial

    Get PDF
    Aims The objective of the Aliskiren Trial on Acute Heart Failure Outcomes (ASTRONAUT) was to determine whether aliskiren, a direct renin inhibitor, would improve post-discharge outcomes in patients with hospitalization for heart failure (HHF) with reduced ejection fraction. Pre-specified subgroup analyses suggested potential heterogeneity in post-discharge outcomes with aliskiren in patients with and without baseline diabetes mellitus (DM). Methods and results ASTRONAUT included 953 patients without DM (aliskiren 489; placebo 464) and 662 patients with DM (aliskiren 319; placebo 343) (as reported by study investigators). Study endpoints included the first occurrence of cardiovascular death or HHF within 6 and 12 months, all-cause death within 6 and 12 months, and change from baseline in N-terminal pro-B-type natriuretic peptide (NT-proBNP) at 1, 6, and 12 months. Data regarding risk of hyperkalaemia, renal impairment, and hypotension, and changes in additional serum biomarkers were collected. The effect of aliskiren on cardiovascular death or HHF within 6 months (primary endpoint) did not significantly differ by baseline DM status (P = 0.08 for interaction), but reached statistical significance at 12 months (non-DM: HR: 0.80, 95% CI: 0.64-0.99; DM: HR: 1.16, 95% CI: 0.91-1.47; P = 0.03 for interaction). Risk of 12-month all-cause death with aliskiren significantly differed by the presence of baseline DM (non-DM: HR: 0.69, 95% CI: 0.50-0.94; DM: HR: 1.64, 95% CI: 1.15-2.33; P < 0.01 for interaction). Among non-diabetics, aliskiren significantly reduced NT-proBNP through 6 months and plasma troponin I and aldosterone through 12 months, as compared to placebo. Among diabetic patients, aliskiren reduced plasma troponin I and aldosterone relative to placebo through 1 month only. There was a trend towards differing risk of post-baseline potassium ≥6 mmol/L with aliskiren by underlying DM status (non-DM: HR: 1.17, 95% CI: 0.71-1.93; DM: HR: 2.39, 95% CI: 1.30-4.42; P = 0.07 for interaction). Conclusion This pre-specified subgroup analysis from the ASTRONAUT trial generates the hypothesis that the addition of aliskiren to standard HHF therapy in non-diabetic patients is generally well-tolerated and improves post-discharge outcomes and biomarker profiles. In contrast, diabetic patients receiving aliskiren appear to have worse post-discharge outcomes. Future prospective investigations are needed to confirm potential benefits of renin inhibition in a large cohort of HHF patients without D

    A hierarchical Bayesian perspective on majorization-minimization for non-convex sparse regression: Application to M/EEG source imaging

    No full text
    Majorization-minimization (MM) is a standard iterative optimization technique which consists in minimizing a sequence of convex surrogate functionals. MM approaches have been particularly successful to tackle inverse problems and statistical machine learning problems where the regularization term is a sparsity-promoting concave function. However, due to non-convexity, the solution found by MM depends on its initialization. Uniform initialization is the most natural and often employed strategy as it boils down to penalizing all coefficients equally in the first MM iteration. Yet, this arbitrary choice can lead to unsatisfactory results in severely under-determined inverse problems such as source imaging with magneto- and electro-encephalography (M/EEG). The framework of hierarchical Bayesian modeling (HBM) is an alternative approach to encode sparsity. This work shows that for certain hierarchical models, a simple alternating scheme to compute fully Bayesian maximum a posteriori (MAP) estimates leads to the exact same sequence of updates as a standard MM strategy (see the adaptive lasso). With this parallel outlined, we show how to improve upon these MM techniques by probing the multimodal posterior density using Markov Chain Monte-Carlo (MCMC) techniques. Firstly, we show that these samples can provide well-informed initializations that help MM schemes to reach better local minima. Secondly, we demonstrate how it can reveal the different modes of the posterior distribution in order to explore and quantify the inherent uncertainty and ambiguity of such ill-posed inference procedure. In the context of M/EEG, each mode corresponds to a plausible configuration of neural sources, which is crucial for data interpretation, especially in clinical contexts. Results on both simulations and real datasets show how the number or the type of sensors affect the uncertainties on the estimates

    FCIC staff audiotape of interview with Felix Salmon, Reuters

    No full text

    Impact of an Australian state-wide active travel campaign targeting primary schools

    No full text
    Active travel can have health and environmental benefits. This study evaluated the impact of a month-long (October 2015) campaign encouraging primary school children in Victoria, Australia to engage in active school travel. With support from local councils, schools participated in the campaign by monitoring active school travel and delivering promotional activities. A longitudinal study evaluated campaign impact. Carers (n = 715) of Victorian primary school children were recruited via social media and completed online surveys at baseline (T1; 0 wk) and during (T2; +2 wks) and after the campaign (T3; +6 wks). Carers reported their child's travel behaviour over the last five school days, and whether their child and/or their child's school participated in the campaign. Separate generalised linear models were used for T2 and T3 outcomes adjusting for T1 values and potential confounders. A greater proportion of children who participated in the campaign engaged in any active school travel at T2 (OR = 2.49, 95% CI = 1.63, 3.79) and T3 (1.62, 95% CI = 1.06, 2.46) compared with non-participating children. Similarly, these children had a higher frequency of active school travel at T2 (IRR = 1.60, 95% CI = 1.29, 1.97) and T3 (IRR = 1.45, 95% CI = 1.16, 1.80). Campaign participation resulted in small, short-term increases in active school travel. Keywords: Walking, Cycling, Active travel, Young people, Intervention, Schoo
    • …
    corecore