1,991 research outputs found

    Independent individual addressing of multiple neutral atom qubits with a MEMS beam steering system

    Full text link
    We demonstrate a scalable approach to addressing multiple atomic qubits for use in quantum information processing. Individually trapped 87Rb atoms in a linear array are selectively manipulated with a single laser guided by a MEMS beam steering system. Single qubit oscillations are shown on multiple sites at frequencies of ~3.5 MHz with negligible crosstalk to neighboring sites. Switching times between the central atom and its closest neighbor were measured to be 6-7 us while moving between the central atom and an atom two trap sites away took 10-14 us.Comment: 9 pages, 3 figure

    MEMS-Based Optical Beam Steering System for Quantum Information Processing in 2D Atomic Systems

    Full text link
    In order to provide scalability to quantum information processors utilizing trapped atoms or ions as quantum bits (qubits), the capability to address multiple individual qubits in a large array is needed. Micro-electromechanical systems (MEMS) technology can be used to create a flexible and scalable optical system to direct the necessary laser beams to multiple qubit locations. We developed beam steering optics using controllable MEMS mirrors that enable one laser beam to address multiple qubit locations in a 2 dimensional trap lattice. MEMS mirror settling times of 10 us were demonstrated which allow for fast access time between qubits.Comment: 7 pages, 4 figure

    Multiplexed broadband beam steering system utilizing high speed MEMS mirrors

    Full text link
    We present a beam steering system based on micro-electromechanical systems technology that features high speed steering of multiple laser beams over a broad wavelength range. By utilizing high speed micromirrors with a broadband metallic coating, our system has the flexibility to simultaneously incorporate a wide range of wavelengths and multiple beams. We demonstrate reconfiguration of two independent beams at different wavelengths (780 and 635 nm) across a common 5x5 array with 4 us settling time. Full simulation of the optical system provides insights on the scalability of the system. Such a system can provide a versatile tool for applications where fast laser multiplexing is necessary.Comment: 11 pages, 6 figures, submitte

    Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature

    Get PDF
    Two-dimensional (2D) van der Waals ferroelectrics provide an unprecedented architectural freedom for the creation of artificial multiferroics and non-volatile electronic devices based on vertical and co-planar heterojunctions of 2D ferroic materials. Nevertheless, controlled microscopic manipulation of ferroelectric domains is still rare in monolayer-thick 2D ferroelectrics with in-plane polarization. Here we report the discovery of robust ferroelectricity with a critical temperature close to 400 K in SnSe monolayer plates grown on graphene, and the demonstration of controlled room temperature ferroelectric domain manipulation by applying appropriate bias voltage pulses to the tip of a scanning tunneling microscope (STM). This study shows that STM is a powerful tool for detecting and manipulating the microscopic domain structures in 2D ferroelectric monolayers, which is difficult for conventional approaches such as piezoresponse force microscopy, thus facilitating the hunt for other 2D ferroelectric monolayers with in-plane polarization with important technological applications

    Search for the Lepton-Number-Violating Decay Ξ−→pΌ−Ό−\Xi^- \to p \mu^- \mu^-

    Full text link
    A sensitive search for the lepton-number-violating decay Ξ−→pΌ−Ό−\Xi^-\to p \mu^-\mu^- has been performed using a sample of ∌109\sim10^9 Ξ−\Xi^- hyperons produced in 800 GeV/cc pp-Cu collisions. We obtain B(Ξ−→pΌ−Ό−)<4.0×10−8\mathcal{B}(\Xi^-\to p \mu^-\mu^-)< 4.0\times 10^{-8} at 90% confidence, improving on the best previous limit by four orders of magnitude.Comment: 9 pages, 5 figures, to be published in Phys. Rev. Let

    Measurement of the Alpha Asymmetry Parameter for the Omega- to Lambda K- Decay

    Full text link
    We have measured the alpha parameter of the Omega- to Lambda K- decay using data collected with the HyperCP spectrometer during the 1997 fixed-target run at Fermilab. Analyzing a sample of 0.96 million Omega- to Lambda K^-, Lambda to p pi- decays, we obtain alpha_Omega*alpha_Lambda = [1.33+/-0.33(stat)+/-0.52(syst)] x 10^{-2}. With the accepted value of alpha_Lambda, alpha_Omega is found to be [2.07+/-0.51(stat)+/-0.81(syst)] x 10^{-2}.Comment: 5 pages, 4 figures, to be appeared as a Rapid Communication in Phys. Rev.

    Observation of Parity Violation in the Omega-minus -> Lambda + K-minus Decay

    Get PDF
    The alpha decay parameter in the process Omega-minus -> Lambda + K-minus has been measured from a sample of 4.50 million unpolarized Omega-minus decays recorded by the HyperCP (E871) experiment at Fermilab and found to be [1.78 +/- 0.19(stat) +/- 0.16(syst)]{\times}10^{-2}. This is the first unambiguous evidence for a nonzero alpha decay parameter, and hence parity violation, in the Omega-minus -> Lambda + K-minus decay.Comment: 10 pages, 7 figure

    Evidence for the Decay Sigma+ -> p mu+ mu-

    Full text link
    We report the first evidence for the decay Sigma+ -> p mu+ mu- from data taken by the HyperCP experiment(E871) at Fermilab. Based on three observed events, the branching ratio is B(Sigma+ -> p,mu+,mu-) = [8.6 +6.6,-5.4(stat) +/-5.5(syst)] x 10**-8. The narrow range of dimuon masses may indicate that the decay proceeds via a neutral intermediate state, Sigma+ -> p P0, P0 -> mu+ mu-, with a P0 mass of 214.3 +/- 0.5 MeV/c**2 and branching ratio B(Sigma+ -> p P0; P0 -> mu+ mu-) = [3.1 +2.4,-1.(stat) +/-1.5(syst)] x 10**-8.Comment: As published in PR

    HyperCP: A high-rate spectrometer for the study of charged hyperon and kaon decays

    Full text link
    The HyperCP experiment (Fermilab E871) was designed to search for rare phenomena in the decays of charged strange particles, in particular CP violation in Ξ\Xi and Λ\Lambda hyperon decays with a sensitivity of 10−410^{-4}. Intense charged secondary beams were produced by 800 GeV/c protons and momentum-selected by a magnetic channel. Decay products were detected in a large-acceptance, high-rate magnetic spectrometer using multiwire proportional chambers, trigger hodoscopes, a hadronic calorimeter, and a muon-detection system. Nearly identical acceptances and efficiencies for hyperons and antihyperons decaying within an evacuated volume were achieved by reversing the polarities of the channel and spectrometer magnets. A high-rate data-acquisition system enabled 231 billion events to be recorded in twelve months of data-taking.Comment: 107 pages, 45 Postscript figures, 14 tables, Elsevier LaTeX, submitted to Nucl. Instrum. Meth.
    • 

    corecore