21 research outputs found

    Paratuberculosis control: a review with a focus on vaccination

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (MAP) infection causes in ruminants a regional chronic enteritis that is increasingly being recognized as a significant problem affecting animal health, farming and the food industry due to the high prevalence of the disease and to recent research data strengthening the link between the pathogen and human inflammatory bowel disease (IBD). Control of the infection through hygiene-management measures and test and culling of positive animals has to date not produced the expected results and thus a new focus on vaccination against this pathogen is necessary. This review summarizes all vaccination studies of cattle, sheep or goats reporting production, epidemiological or pathogenetic effects of vaccination published before January 2010 and that provide data amenable to statistical analyses. The meta analysis run on the selected data, allowed us to conclude that most studies included in this review reported that vaccination against MAP is a valuable tool in reducing microbial contamination risks of this pathogen and reducing or delaying production losses and pathogenetic effects but also that it did not fully prevent infection. However, the majority of MAP vaccines were very similar and rudimentary and thus there is room for improvement in vaccine types and formulations

    Trichomonas vaginalis Lipophosphoglycan Mutants Have Reduced Adherence and Cytotoxicity to Human Ectocervical Cells

    No full text
    The extracellular human pathogen Trichomonas vaginalis is covered by a dense glycocalyx thought to play a role in host-parasite interactions. The main component of the glycocalyx is lipophosphoglycan (LPG), a polysaccharide anchored in the plasma membrane by inositol phosphoceramide. To study the role of LPG in trichomonads, we produced T. vaginalis LPG mutants by chemical mutagenesis and lectin selection and characterized them using morphological, biochemical, and functional assays. Two independently selected LPG mutants, with growth rates comparable to that of the wild-type (parent) strain, lost the ability to bind the lectins Ricinnus comunis agglutinin I (RCA120) and wheat germ agglutinin, indicating alterations in surface galactose and glucosamine residues. LPG isolated from mutants migrated faster than parent strain LPG on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting the mutants had shorter LPG molecules. Dionex high-performance anion exchange chromatography with pulsed amperometric detection analyses revealed galactosamine, glucosamine, galactose, glucose, mannose/xylose, and rhamnose as the main monosaccharides of T. vaginalis parent strain LPG. LPG from both mutants showed a reduction of galactose and glucosamine, corresponding with the reduced size of their LPG molecules and inability to bind the lectins RCA120 and wheat germ agglutinin. Mutant parasites were defective in attachment to plastic, a characteristic associated with avirulent strains of T. vaginalis. Moreover, the mutants were less adherent and less cytotoxic to human vaginal ectocervical cells in vitro than the parental strain. Finally, while parent strain LPG could inhibit the attachment of parent strain parasites to vaginal cells, LPG from either mutant could not inhibit attachment. These combined results demonstrate that T. vaginalis adherence to host cells is LPG mediated and that an altered LPG leads to reduced adherence and cytotoxicity of this parasite

    The Pattern of Distribution of Amino Groups Modulates the Structure and Dynamics of Natural Aminoglycosides: Implications for RNA Recognition

    No full text
    Aminoglycosides are clinically relevant antibiotics that participate in a large variety of molecular recognition processes involving different RNA and protein receptors. The 3-D structures of these policationic oligosaccharides play a key role in RNA binding and therefore determine their biological activity. Herein, we show that the particular NH2/NH3 +/OH distribution within the antibiotic scaffold modulates the oligosaccharide conformation and flexibility. In particular, those polar groups flanking the glycosidic linkages have a significant influence on the antibiotic structure. A careful NMR/theoretical analysis of different natural aminoglycosides, their fragments, and synthetic derivatives proves that both hydrogen bonding and chargecharge repulsive interactions are at the origin of this effect. Current strategies to obtain new aminoglycoside derivatives are mainly focused on the optimization of the direct ligand/receptor contacts. Our results strongly suggest that the particular location of the NH2/NH3 +/OH groups within the antibiotics can also modulate their RNA binding properties by affecting the conformational preferences and inherent flexibility of these drugs. This fact should also be carefully considered in the design of new antibiotics with improved activityWe thank Prof. J. Blanchard (Albert Einstein College of Medicine, New York) for supplying the plasmid encoding Mycobacterium tuberculosis AAC(2¢). Financial support from DGES (Grant CTQ2004-04494) is acknowledged. F.C. thanks the Ministerio de Educación y Ciencia for a Ramon y Cajal contract. We also thank CESGA (Santiago de Compostela) for computer support.Peer reviewe

    Development and preclinical evaluation of a new galactomannan-based dressing with antioxidant properties for wound healing

    No full text
    We describe a novel wound dressing (HR006) with two components: a lyophilized matrix of the galactomannan from locust bean gum (LBG) and an antioxidant hydration solution (AHsol ) containing curcumin and N-acetyl-L-cysteine (NAC). Physicostructural analyses of the LBG matrix revealed homogeneous interconnected pores with high absorbing capacity showing excellent properties for moist wound care (MWC). In an in vitro oxidative stress fibroblast injury model, the AHsol showed relevant protective effects reducing intracellular reactive oxygen species (ROS) production, rescuing cell viability, and regulating expression of inflammation-related genes (COX-2, TNFα, IL-1α, IL-1β). The new dressing showed good biocompatibility profile as demonstrated by cytotoxicity, hemocompatibility, and skin irritation tests. Moreover, in an in vivo skin wound model in pigs, this dressing enhanced the production of healthy and organized granulation tissue and re-epithelization. In summary, HR006 exhibits significant antioxidant activity, good biocompatibility, and excellent repair capabilities improving tissue remodeling and the healing of wounds

    A Novel GATA1 Variant in the C-Terminal Zinc Finger Compared with the Platelet Phenotype of Patients with A Likely Pathogenic Variant in the N-Terminal Zinc Finger

    Get PDF
    The GATA1 transcription factor is essential for normal erythropoiesis and megakaryocytic differentiation. Germline GATA1 pathogenic variants in the N-terminal zinc finger (N-ZF) are typically associated with X-linked thrombocytopenia, platelet dysfunction, and dyserythropoietic anemia. A few variants in the C-terminal ZF (C-ZF) domain are described with normal platelet count but altered platelet function as the main characteristic. Independently performed molecular genetic analysis identified a novel hemizygous variant (c.865C>T, p.H289Y) in the C-ZF region of GATA1 in a German patient and in a Spanish patient. We characterized the bleeding and platelet phenotype of these patients and compared these findings with the parameters of two German siblings carrying the likely pathogenic variant p.D218N in the GATA1 N-ZF domain. The main difference was profound thrombocytopenia in the brothers carrying the p.D218N variant compared to a normal platelet count in patients carrying the p.H289Y variant; only the Spanish patient occasionally developed mild thrombocytopenia. A functional platelet defect affecting αIIbβ3 integrin activation and α-granule secretion was present in all patients. Additionally, mild anemia, anisocytosis, and poikilocytosis were observed in the patients with the C-ZF variant. Our data support the concept that GATA1 variants located in the different ZF regions can lead to clinically diverse manifestations
    corecore