26 research outputs found

    A variational approach to modeling slow processes in stochastic dynamical systems

    Get PDF
    The slow processes of metastable stochastic dynamical systems are difficult to access by direct numerical simulation due the sampling problem. Here, we suggest an approach for modeling the slow parts of Markov processes by approximating the dominant eigenfunctions and eigenvalues of the propagator. To this end, a variational principle is derived that is based on the maximization of a Rayleigh coefficient. It is shown that this Rayleigh coefficient can be estimated from statistical observables that can be obtained from short distributed simulations starting from different parts of state space. The approach forms a basis for the development of adaptive and efficient computational algorithms for simulating and analyzing metastable Markov processes while avoiding the sampling problem. Since any stochastic process with finite memory can be transformed into a Markov process, the approach is applicable to a wide range of processes relevant for modeling complex real-world phenomena

    Sparse learning of stochastic dynamic equations

    Full text link
    With the rapid increase of available data for complex systems, there is great interest in the extraction of physically relevant information from massive datasets. Recently, a framework called Sparse Identification of Nonlinear Dynamics (SINDy) has been introduced to identify the governing equations of dynamical systems from simulation data. In this study, we extend SINDy to stochastic dynamical systems, which are frequently used to model biophysical processes. We prove the asymptotic correctness of stochastics SINDy in the infinite data limit, both in the original and projected variables. We discuss algorithms to solve the sparse regression problem arising from the practical implementation of SINDy, and show that cross validation is an essential tool to determine the right level of sparsity. We demonstrate the proposed methodology on two test systems, namely, the diffusion in a one-dimensional potential, and the projected dynamics of a two-dimensional diffusion process

    Koopman analysis of quantum systems

    Get PDF
    Koopman operator theory has been successfully applied to problems from various research areas such as fluid dynamics, molecular dynamics, climate science, engineering, and biology. Applications include detecting metastable or coherent sets, coarse-graining, system identification, and control. There is an intricate connection between dynamical systems driven by stochastic differential equations and quantum mechanics. In this paper, we compare the ground-state transformation and Nelson's stochastic mechanics and demonstrate how data-driven methods developed for the approximation of the Koopman operator can be used to analyze quantum physics problems. Moreover, we exploit the relationship between Schr\"odinger operators and stochastic control problems to show that modern data-driven methods for stochastic control can be used to solve the stationary or imaginary-time Schr\"odinger equation. Our findings open up a new avenue towards solving Schr\"odinger's equation using recently developed tools from data science

    Spectral Properties of Effective Dynamics from Conditional Expectations

    Get PDF
    The reduction of high-dimensional systems to effective models on a smaller set of variables is an essential task in many areas of science. For stochastic dynamics governed by diffusion processes, a general procedure to find effective equations is the conditioning approach. In this paper, we are interested in the spectrum of the generator of the resulting effective dynamics, and how it compares to the spectrum of the full generator. We prove a new relative error bound in terms of the eigenfunction approximation error for reversible systems. We also present numerical examples indicating that, if Kramers–Moyal (KM) type approximations are used to compute the spectrum of the reduced generator, it seems largely insensitive to the time window used for the KM estimators. We analyze the implications of these observations for systems driven by underdamped Langevin dynamics, and show how meaningful effective dynamics can be defined in this setting

    Tensor-based computation of metastable and coherent sets

    Full text link
    Recent years have seen rapid advances in the data-driven analysis of dynamical systems based on Koopman operator theory -- with extended dynamic mode decomposition (EDMD) being a cornerstone of the field. On the other hand, low-rank tensor product approximations -- in particular the tensor train (TT) format -- have become a valuable tool for the solution of large-scale problems in a number of fields. In this work, we combine EDMD and the TT format, enabling the application of EDMD to high-dimensional problems in conjunction with a large set of features. We derive efficient algorithms to solve the EDMD eigenvalue problem based on tensor representations of the data, and to project the data into a low-dimensional representation defined by the eigenvectors. We extend this method to perform canonical correlation analysis (CCA) of non-reversible or time-dependent systems. We prove that there is a physical interpretation of the procedure and demonstrate its capabilities by applying the method to several benchmark data sets

    Data-driven model reduction and transfer operator approximation

    Get PDF
    In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis (TICA), dynamic mode decomposition (DMD), and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods

    Error bounds for kernel-based approximations of the Koopman operator

    Full text link
    We consider the data-driven approximation of the Koopman operator for stochastic differential equations on reproducing kernel Hilbert spaces (RKHS). Our focus is on the estimation error if the data are collected from long-term ergodic simulations. We derive both an exact expression for the variance of the kernel cross-covariance operator, measured in the Hilbert-Schmidt norm, and probabilistic bounds for the finite-data estimation error. Moreover, we derive a bound on the prediction error of observables in the RKHS using a finite Mercer series expansion. Further, assuming Koopman-invariance of the RKHS, we provide bounds on the full approximation error. Numerical experiments using the Ornstein-Uhlenbeck process illustrate our results.Comment: 28 page

    Slow collective variables and molecular kinetics from short off-equilibrium simulations

    Get PDF
    Markov state models (MSMs) and master equation models are popular approaches to approximate molecular kinetics, equilibria, metastable states, and reaction coordinates in terms of a state space discretization usually obtained by clustering. Recently, a powerful generalization of MSMs has been introduced, the variational approach conformation dynamics/molecular kinetics (VAC) and its special case the time-lagged independent component analysis (TICA), which allow us to approximate slow collective variables and molecular kinetics by linear combinations of smooth basis functions or order parameters. While it is known how to estimate MSMs from trajectories whose starting points are not sampled from an equilibrium ensemble, this has not yet been the case for TICA and the VAC. Previous estimates from short trajectories have been strongly biased and thus not variationally optimal. Here, we employ the Koopman operator theory and the ideas from dynamic mode decomposition to extend the VAC and TICA to non-equilibrium data. The main insight is that the VAC and TICA provide a coefficient matrix that we call Koopman model, as it approximates the underlying dynamical (Koopman) operator in conjunction with the basis set used. This Koopman model can be used to compute a stationary vector to reweight the data to equilibrium. From such a Koopman-reweighted sample, equilibrium expectation values and variationally optimal reversible Koopman models can be constructed even with short simulations. The Koopman model can be used to propagate densities, and its eigenvalue decomposition provides estimates of relaxation time scales and slow collective variables for dimension reduction. Koopman models are generalizations of Markov state models, TICA, and the linear VAC and allow molecular kinetics to be described without a cluster discretization

    Partial observations, coarse graining and equivariance in Koopman operator theory for large-scale dynamical systems

    Full text link
    The Koopman operator has become an essential tool for data-driven analysis, prediction and control of complex systems, the main reason being the enormous potential of identifying linear function space representations of nonlinear dynamics from measurements. Until now, the situation where for large-scale systems, we (i) only have access to partial observations (i.e., measurements, as is very common for experimental data) or (ii) deliberately perform coarse graining (for efficiency reasons) has not been treated to its full extent. In this paper, we address the pitfall associated with this situation, that the classical EDMD algorithm does not automatically provide a Koopman operator approximation for the underlying system if we do not carefully select the number of observables. Moreover, we show that symmetries in the system dynamics can be carried over to the Koopman operator, which allows us to massively increase the model efficiency. We also briefly draw a connection to domain decomposition techniques for partial differential equations and present numerical evidence using the Kuramoto--Sivashinsky equation

    Variational Tensor Approach for Approximating the Rare-Event Kinetics of Macromolecular Systems

    Get PDF
    Essential information about the stationary and slow kinetic properties of macromolecules is contained in the eigenvalues and eigenfunctions of the dynamical operator of the molecular dynamics. A recent variational formulation allows to optimally approximate these eigenvalues and eigenfunctions when a basis set for the eigenfunctions is provided. In this study, we propose that a suitable choice of basis functions is given by products of one-coordinate basis functions, which describe changes along internal molecular coordinates, such as dihedral angles or distances. A sparse tensor product approach is employed in order to avoid a combinatorial explosion of products, i.e. of the basis-set size. Our results suggest that the high-dimensional eigenfunctions can be well approximated with relatively small basis set sizes
    corecore