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Markov state models (MSMs) and master equation models are popular approaches to approximate
molecular kinetics, equilibria, metastable states, and reaction coordinates in terms of a state space
discretization usually obtained by clustering. Recently, a powerful generalization of MSMs has been
introduced, the variational approach conformation dynamics/molecular kinetics (VAC) and its special
case the time-lagged independent component analysis (TICA), which allow us to approximate slow
collective variables and molecular kinetics by linear combinations of smooth basis functions or order
parameters. While it is known how to estimate MSMs from trajectories whose starting points are
not sampled from an equilibrium ensemble, this has not yet been the case for TICA and the VAC.
Previous estimates from short trajectories have been strongly biased and thus not variationally optimal.
Here, we employ the Koopman operator theory and the ideas from dynamic mode decomposition
to extend the VAC and TICA to non-equilibrium data. The main insight is that the VAC and TICA
provide a coefficient matrix that we call Koopman model, as it approximates the underlying dynamical
(Koopman) operator in conjunction with the basis set used. This Koopman model can be used to
compute a stationary vector to reweight the data to equilibrium. From such a Koopman-reweighted
sample, equilibrium expectation values and variationally optimal reversible Koopman models can be
constructed even with short simulations. The Koopman model can be used to propagate densities, and
its eigenvalue decomposition provides estimates of relaxation time scales and slow collective variables
for dimension reduction. Koopman models are generalizations of Markov state models, TICA, and the
linear VAC and allow molecular kinetics to be described without a cluster discretization. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4979344]

I. INTRODUCTION

With the ability to generate extensive and high-throughput
molecular dynamics (MD) simulations,1–9 the spontaneous
sampling of rare-events such as protein folding, conforma-
tional changes, and protein-ligand association has become
accessible.10–17 Markov state models (MSMs),18–25 master-
equation models,26–28 and closely related approaches29–33

have emerged as powerful frameworks for the analysis
of extensive MD simulation data. These methods do not
require a very specific a priori definition of relevant reac-
tion coordinates.23,34 Furthermore, they allow a large vari-
ety of mechanistic information to be extracted,10,35,36 and
experimental observables to be computed and structurally
interpreted.12,28,37–40 Finally, they provide a direct approxi-
mation of the dynamic modes describing the slow confor-
mational changes that are identical or closely related to the
so-called reaction coordinates, depending on which notion of
that term is employed.41–46 An especially powerful feature
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of MSMs and similar approaches is that the transition proba-
bilities pij(τ), i.e., the probability that the trajectory is found
in a set Aj a time lag τ after which it has been found in a
set Ai,

pij(τ) = Prob
[
xt+τ ∈ Aj | xt ∈ Ai

]
,

is a conditional transition probability. pij(τ) can be estimated
without bias even if the trajectory is not initiated from a
global, but only a local equilibrium distribution.23 Conse-
quently, given cij(τ) transition events between states i and j at
lag time τ, the maximum likelihood estimator of the transition
probability can be easily shown to be

pij(τ) =
cij(τ)∑
k cik(τ)

, (1)

i.e., the fraction of the number of transitions to j condi-
tioned on starting in i. This conditionality is a key rea-
son why MSMs have become popular to analyze short
distributed simulations that are started from arbitrary config-
urations whose relationship to the equilibrium distribution is
initially unknown.

However, when estimating (1) from simulation data, one
does not generally obtain a time-reversible estimate, i.e., the
stationary probabilities of the transition matrix, πi, will usually
not fulfill the detailed balance equations πipij = πjpji, even if
the underlying dynamics are microscopically time-reversible.
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Compared to a reversible transition matrix, a transition matrix
with independent estimates of pij and pji has more free param-
eters, resulting in larger statistical uncertainties, and may
possess complex-valued eigenvalues and eigenvectors, which
limits the application of some analysis tools designed for equi-
librium molecular processes.47 Since most molecular dynam-
ics simulations are in thermal equilibrium and thus fulfill at
least a generalized microscopic reversibility (Appendix B in
Ref. 48), it is desirable to force pij to fulfill detailed balance,
which both reduces statistical uncertainty and enforces a real-
valued spectrum.47,49 In old studies, the pragmatic solution
to this problem was often to symmetrize the count matrix,
i.e., to simply set csym

ij = cij + cji, which is equivalent to
evaluating the simulation trajectory forward and backward,
and which leads to a transition matrix with detailed bal-
ance when inserted into (1). However, it has been known
since at least 2008 that this estimator is strongly biased,
and therefore reversible maximum likelihood and Bayesian
estimators have been developed.22,23,28,47,49,50 These algo-
rithms formulate the estimation problem as an optimization
or sampling problem of the transition matrix constrained
to fulfill detailed balance. The idea of these algorithms
becomes clear when writing the reversible maximum like-
lihood estimator in two subsequent steps, as demonstrated
in Ref. 47:

1. Reweighting: Estimate the stationary distribution πi given
all transition counts cij under the detailed balance condi-
tion.

2. Estimation: Insert πi and cij into an equation for the
reversible transition matrix to obtain a maximum like-
lihood estimate of pij.

Recently, a powerful extension to the Markov modeling frame-
work has been introduced: the variational approach (VA) to
approximate the slow components of reversible Markov pro-
cesses.51 Due to its relevance for molecular dynamics, it
has also been referred to as VA for molecular kinetics52,53

or VA for conformation dynamics (VAC).52,54 It has been
known for many years that Markov state models are good
approximations to molecular kinetics if their largest eigenval-
ues and eigenvectors approximate the eigenvalues and eigen-
functions of the Markov operator governing the full-phase
space dynamics;18,34,55 moreover, the first few eigenvalues
and eigenvectors are sufficient to compute almost all station-
ary and kinetic quantities of interest.37,38,56–58 The VAC has
generalized this idea beyond discrete states and formulated
the approximation problem of molecular kinetics in terms
of an approach that is similar to the variational approach
in quantum mechanics.51–53 It is based on the following
variational principle: If we are given a set of n orthogo-
nal functions of state space and evaluate the autocorrela-
tions of the molecular dynamics in these functions at lag
time τ, these will give us lower bounds to the true eigen-
values λ1(τ), . . . , λn(τ) of the Markov operator, equivalent
to an underestimate of relaxation time scales and an over-
estimate of relaxation rates. Only if the n functions used
are the eigenfunctions themselves, then their autocorrela-
tions will be maximal and identical to the true eigenvalues
λ1(τ), . . . , λn(τ). Note that this statement is true in the correct

statistical limit—for finite data, the variational bound can be
violated by problems in the estimation procedure. Sources of
violation include systematic estimator bias, which is addressed
in this work, and overfitting, which can be addressed by
cross-validation.59

This principle allows us to formulate variational optimiza-
tion algorithms to approximate the eigenvalues and eigenfunc-
tions of the Markov operator. The linear VAC proceeds as
follows:

1. Fix an arbitrary basis set χ =
[
χ1(x), . . . , χn(x)

]
and

evaluate the values of all basis functions for all sampled
MD configurations x.

2. Estimate two covariance matrices: the covariance matrix
C(0) and the time-lagged covariance matrix C(τ) from
the basis-set-transformed data.

3. Solve a generalized eigenvalue problem involving both
C(0) and C(τ), and obtain estimates for the eigenval-
ues and the optimal representation of eigenfunctions as a
linear combination of basis functions.

Note that the functions χ can be arbitrary nonlinear func-
tions in the original coordinates x, which allows complex
nonlinear dynamics to be encoded even within this linear opti-
mization framework. The variational approach has spawned a
variety of follow-up works, for example, it has been shown that
the algorithm called blind source separation, time-lagged, or
time-structure based independent component analysis (TICA)
established in signal processing and machine learning60–62 is a
special case of the VAC.52 TICA is now widely used in order to
reduce the dimensionality of MD data sets to a few slow collec-
tive coordinates, in which MSMs and other kinetic models can
be built efficiently.52,63,64 The VAC has been used to generate
and improve guesses of collective reaction coordinates.46,65

A VAC-based metric has been defined which transforms the
simulation data into a space in which Euclidean distance corre-
sponds to kinetic distance.66,67 The importance of meaningful
basis sets has been discussed, and a basis for peptide dynam-
ics has been proposed in Ref. 54. Kernel versions of TICA
have been proposed68,69 and nonlinear deep versions have been
proposed based on tensor approximations of products of sim-
ple basis functions.70 Finally, the variational principle ranks
kinetic models by the magnitude of their largest eigenvalues
or derived quantities,51 which can be used to select hyper-
parameters such as the basis functions χ, or the number of
states in a Markov state model.59,71

Despite the popularity of the VAC and TICA, their esti-
mation from MD data is still in the stage that MSMs had been
about a decade ago: A direct estimation of covariance matri-
ces will generally provide a non-symmetric C(τ) matrix and
complex eigenvalues/eigenfunction estimates that are not con-
sistent with reversible molecular dynamics. In order to avoid
this problem, the current state of the art is to enforce the sym-
metrization of covariance matrices directly.52,63,69 In lack of a
better estimator, this approach is currently used also with short
MD simulations from distributed computing despite the fact
that the resulting time scales and eigenfunctions may be biased
and misleading. This problem is addressed in the present
paper.
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The algorithm of the linear VAC51,53 is identical to more
recently proposed extended dynamic mode decomposition
(EDMD),72 which is based on dynamic mode decomposition
(DMD).73–76 However, while the VAC has been derived for
reversible and stationary dynamics, EDMD has been devel-
oped in the context of dynamical systems and fluid mechan-
ics, where data are often nonreversible and non-stationary.
Mathematically, these methods are based on the eigenvalue
decomposition of the Koopman operator, which provides a
theoretical description of non-stationary and non-equilibrium
dynamics.77,78 In the present paper, this theory is used in
order to formulate robust equilibrium estimators for covari-
ance matrices, even if the simulation data are generated in
many short simulations that are not distributed according to
equilibrium. Based on these estimates, a Koopman model
is computed—a matrix model that approximates the dynam-
ics of the Koopman operator on the basis functions used.
Koopman models are proper generalizations of Markov state
models—they do not rely on a state space clustering, but can
still be used to propagate densities in time, and their eigen-
values and eigenvectors provide estimates of the equilibrium
relaxation time scales and slow collective variables. We pro-
pose a reversible Koopman model estimator that proceeds
analogously to reversible MSM estimation:

1. Reweighting: Estimate a reweighting vector ui with an
entry for each basis function given the covariance matri-
ces Ĉ(0) and Ĉ(τ) that have been empirically estimated
without symmetrization.

2. Estimation: Insert ui and Ĉ(0), Ĉ(τ) into an equation for
the symmetric equilibrium estimates of C(0) and C(τ).
Then compute a Koopman model, and from its eigen-
value decomposition the relaxation time scales and slow
collective variables.

In addition to this result, the reweighting vector ui allows us
to approximate any equilibrium estimate in terms of a linear
combination of our basis functions from off-equilibrium data.
The estimator is asymptotically unbiased in the limits of many
short trajectories and an accurate basis set.

The new methods are illustrated on toy examples
with stochastic dynamics and a benchmark protein-ligand
binding problem. The methods described in this arti-
cle are implemented in PyEMMA version 2.3 or later
(www.pyemma.org).71

II. VARIATIONAL APPROACH OF MOLECULAR
KINETICS

The VAC is an algorithmic framework to approximate the
slow components of molecular dynamics—also called confor-
mation dynamics or molecular kinetics—from data. It consists
of two main ingredients: (1) a variational principle that pro-
vides a computable score of a model of the slow components
and (2) an algorithm based on the variational principle that
estimates slow components from simulation data.

A. Variational principle of conformation dynamics

Simulations of molecular dynamics (MD) can be mod-
eled as realizations of an ergodic and time-reversible Markov

process {xt} in a phase space Ω. xt contains all variables
that determine the conformational progression after time t
(e.g., positions and velocities of all atoms). The time evo-
lution of the probability distribution pt (x) of the molecular
ensemble can be decomposed into a set of relaxation processes
as

pt+τ (x) =
∞∑

i=1

e−
τ
ti µ (x)ψi (x) 〈ψi, pt〉 , (2)

where µ (x) is the stationary (Boltzmann) density of the sys-
tem, ti are relaxation time scales sorted in decreasing order, ψi

are eigenfunctions of the backward operator or Koopman oper-
ator of {xt} with eigenvalues λi (τ) = e−

τ
ti (see Section III A),

and the inner product is defined as 〈ψi, pt〉 = ∫ dx ψi (x) pt (x).
The first spectral component is given by the constant eigen-
function ψ1 (x) = 1 (x) ≡ 1 and infinite time scale t1 = ∞ > t2
corresponding to the stationary state of the system. Accord-
ing to this decomposition, the m dominant eigenfunctions
ψ1, . . . ,ψm can be interpreted as m slow collective variables,
which characterize the behavior of a molecular system on large
time scales τ � tm+1.

The eigenvalues and eigenfunctions can also be formu-
lated by the following variational principle:51,53 For any m ≥ 1,
the first m eigenfunctions ψ1, . . . ,ψm are the solution of the
following optimization problem:

Rm = max
f1,...,fm

m∑
i=1

Eµ
[
fi (xt) fi (xt+τ)

]
, (3)

s.t. Eµ
[
fi(xt)

2
]
= 1,

Eµ
[
fi (xt) fj (xt)

]
= 0, for i , j,

where Eµ [·] denotes the expected value with xt sampled from
the stationary density µ and Rm is the generalized Rayleigh
quotient, or Rayleigh trace, with maximum value

∑m
i=1 λi.

Therefore, for every other set of functions that aims at approx-
imating the true eigenfunctions, the eigenvalues will be under-
estimated, and we can use this variational principle in order
to search for the best approximation of eigenfunctions and
eigenvalues.

B. Linear variational approach

In this paper, we focus on algorithms that approximate
the eigenfunctions in the spectral decomposition (2) by a lin-
ear combination of real-valued basis functions, also called
feature functions, χ = (χ1, . . . , χm)>. Thus, we make the
ansatz,

fi(x) =
m∑

j=1

bij χj(x) = b>i χ(x) (4)

with expansion coefficients bi = (bi1, . . . , bim)>. Note that the
functions χ are generally nonlinear in x; however, we will call
the resulting algorithm a linear VAC because it is linear in the
variables bi.

1. Linear VAC algorithm

By solving (3) with the ansatz (4), we obtain the
linear VAC to optimally approximate eigenvalues λi and
eigenfunctions ψi.51,53 We first estimate the equilibrium

http://www.pyemma.org
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covariance and time-lagged covariance matrices of the basis
functions,

C (0) = Eµ
[
χ (xt) χ(xt)

>
]

, (5)

C (τ) = Eµ
[
χ (xt) χ(xt+τ)>

]
, (6)

then the solution of the generalized eigenvalue problem

C (τ) B = C (0) BΛ̂ (7)

provides the optimal approximation to eigenvalues Λ̂= diag(
λ̂1, . . . , λ̂m

)
and expansion coefficient B= (b1, . . . , bm).

Inserting these coefficients into (4) results in the approxi-
mated eigenfunctions.51,53 An important observation is that
(7) is formally equivalent to the eigenvalue decomposition of
K = C(0)−1C (τ) if C (0) has full rank. K is the Koopman
model that is the central object of the present paper and will
provide the basis for constructing equilibrium estimates from
short simulations (see Section III).

The linear VAC algorithm provides a general framework
for the finite-dimensional approximation of spectral compo-
nents of conformation dynamics, and two widely used anal-
ysis methods, time-lagged independent component analysis
(TICA)52,60,63 and Markov state models (MSMs),23 are both
special cases of the linear VAC, see also Fig. 1.

2. TICA

In TICA, basis functions are mean-free molecular coor-
dinates, χ(x) = x − µ, where µ are the means. In particular,
the TICA basis set is linear in the input coordinates. Then the
resulting estimates of eigenfunctions can be viewed as a set of
linearly independent components (ICs) with autocorrelations
λi(τ). The dominant ICs can be used to reduce the dimension of
the molecular system. Notice that using mean free coordinates
is equivalent to removing the stationary spectral component
(λ1,ψ1)≡ (1,1), thus TICA will only contain the dynamical
components, starting from (λ2,ψ2).

In recent MD papers, the term TICA has also been used
as the application of Eqs. (5)–(7) on trajectories of features,
such as distances, contact maps, or angles, i.e., the transfor-
mation χ (xt) has been applied.52,63 In this paper, we will
avoid using the term TICA when VAC is meant, because a
main result here is that in order to obtain a good variational
approximation of the spectral components in (2), it is neces-
sary to employ specific estimation algorithms for (5) and (6)
that require the stationary spectral component (λ1,ψ1) to be
kept.

3. MSM

The MSM is a special case of the VAC while using the
indicator functions as a basis set,

χi (x) =



1, for x ∈ Ai,

0, for x < Ai,
(8)

where A1, . . . , Am form a partition of the phase space Ω.
With such basis functions, the correlation matrix C (0) is a
diagonal matrix with [C (0)]ii = Pr (xt ∈ Ai) being the equi-
librium probability of Ai, and the (i, j)th element [C (τ)]ij

= Pr
(
xt ∈ Ai, xt+τ ∈ Aj

)
of the time-lagged correlation matrix

FIG. 1. Relationships between different methods for estimating the slow com-
ponents of molecular kinetics: Methods for reversible dynamics are based on
the variational principle, leading to the variational approach.51,53 Methods
for nonreversible dynamics can be derived by minimizing the least-squares
error between the predicted and the observed dynamics and lead to a signal
decomposition algorithm also called blind source separation.60 Interestingly,
the nonreversible estimates can also be obtained by implementing the using
empirical estimates instead of reversible equilibrium estimates of covariance
matrices. Amongst the nonreversible methods, the most general is the Koop-
man model estimation Algorithm (1 here), as they employ linear combinations
of arbitrary basis functions. Their eigenvalue decompositions are known as
EDMD and TICA in feature space. Regular TICA can be derived if the basis
functions are linear in the original coordinates, and MSMs are obtained by
using characteristic functions as basis. Amongst reversible methods, the vari-
ational approach leading to a reversible Koopman model Algorithm (3 here)
is the most general, and reversible TICA/reversible MSM estimation methods
can be derived by appropriate basis set choices. The methods in red boxes are
derived in this paper, and the key to these algorithms is the ability to conduct
a reversible equilibrium estimate of covariance matrices for general basis sets
Algorithm (2 here).

C (τ) is equal to the equilibrium frequency of the transition
from Ai to Aj. Thus, a piecewise-constant approximation of
eigenfunctions

ψj (x) = bij, for x ∈ Ai, (9)

and the corresponding eigenvalues are given by the general-
ized eigenvalue problem (7). When the equilibrium probabil-
ity of each Ai is positive, this problem can be equivalently
transformed into a simple eigenvalue problem by

C (τ) B = C (0) BΛ ⇒ P (τ) B = BΛ. (10)

Here, P (τ) = C(0)−1C (τ) is the transition matrix of the MSM
with [P (τ)]ij = Pr

(
xt+τ ∈ Aj |xt ∈ Ai

)
and is the Koopman

model for the basis set (8). The viewpoint that MSMs can be
viewed as an approximation to molecular kinetics via a pro-
jection of eigenfunctions to a basis of characteristic functions
has been proposed earlier.34

The choice of more general basis functions for the VAC
is beyond the scope of this paper, and some related work can
be found in Refs. 53, 54, and 70.
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C. Estimation of covariance matrices

The remaining problem is how to obtain estimates of C (0) and C (τ). For convenience of notation, we take all sampled
coordinates xt of a trajectory, evaluate their basis function values χ (xt) = (χ1 (xt) , . . . , χm (xt))>, and define the following two
matrices of size N × m,

X =
*...
,

χ1 (x1) · · · χm (x1)
...

...
χ1 (xT−τ) · · · χm (xT−τ)

+///
-

, Y =
*...
,

χ1 (xτ+1) · · · χm (xτ+1)
...

...
χ1 (xT ) · · · χm (xT )

+///
-

, (11)

where each row corresponds to one stored time step. Thus, X
contains the first N = T − τ time steps and Y contains the
last N = T − τ time steps. Assuming that {xt} is ergodic,
C (0) and C (τ) can be directly estimated by time averages of
χ (xt) χ(xt)> and χ (xt) χ(xt+τ)> over the trajectory,

Ĉ (0) =
1
N

X>X, (12)

Ĉ (τ) =
1
N

X>Y. (13)

Furthermore, multiple trajectories k = 1, . . . , K are triv-
ially handled by adding up their contributions, e.g., Ĉ (0)
= 1∑

k Nk

∑
k X>k Xk , etc. For all covariance estimates in this

paper, we can employ the shrinkage approach79,80 in order
to reduce the sensitivity of estimated covariances to statis-
tical noise81 and improve the robustness of eigenvalues and
eigenvectors computed from (12) and (13).

Due to statistical noise or non-equilibrium starting points,
the time-lagged covariance matrix Ĉ (τ) estimated by this
method is generally not symmetric, even if the underlying
dynamics are time-reversible. Thus, the eigenvalue problem
(7) may yield complex eigenvalues and eigenvectors, which
are undesirable in analysis of statistically reversible MD sim-
ulations. The relaxation time scales ti can be computed from
complex eigenvalues as ti = −τ/ ln |λi (τ)| by using the norm
of eigenvalues, but it is a priori unclear how to perform com-
ponent analysis and dimension reduction as in TICA based on
complex eigenfunctions.

In order to avoid the problem of complex estimates,
a symmetric estimator is often used in applications, which
approximates C (0) and C (τ) by empirically averaging over all
transition pairs (xt , xt+τ) and their reverses (xt+τ , xt), which is
equivalent to averaging the time-forward and the time-inverted
trajectory,

Ĉsym (0) ≈
1

2N

(
X>X + Y>Y

)
, (14)

Ĉsym (τ) ≈
1

2N

(
X>Y + Y>X

)
, (15)

so that the estimate of C (τ) is always symmetric and the
generalized eigenvalue problem (7) has real-valued solutions.

For equilibrium simulations, i.e., if the simulation starting
points are sampled from the global equilibrium, or the sim-
ulations are much longer than the slowest relaxation times,
Eqs. (14) and (15) are unbiased estimates of Cµ (0) and Cµ (τ)
and can also be derived from the maximum likelihood esti-
mation by assuming a multivariate normal distribution of

(xt , xt+τ).69 The major difficulty of this approach arises from
non-equilibrium data, i.e., simulations whose starting points
are not drawn from the equilibrium distribution and are not
long enough to reach that equilibrium during the simulation.
In this situation, (14) and (15) do not converge to the true
covariance matrices in the limit of infinitely many trajectories
and may thus provide biased estimates of the eigenvalues and
eigenfunctions or independent components.

The difference between the direct estimation and symmet-
ric estimation methods of covariance matrices becomes clear
when considering the MSM special case. Since the transition
matrix is P = C(0)−1C(τ), as shown in Section II B, transition
matrices of MSMs given by the two estimators are

[P]ij =
cij(τ)∑m

k=1 cik(τ)
(direct estimation), (16)

[P]ij =
cij(τ) + cji(τ)∑m

k=1 cik(τ) + cki(τ)
(symmetric estimation), (17)

respectively. If the transition dynamics between discrete states
A1, . . . , Am are exactly Markovian, the direct estimator con-
verges to the true transition matrix in the large-data limit for
non-equilibrium or even nonreversible simulations, whereas
the symmetric estimator does not. However, the direct esti-
mator may give a nonreversible transition matrix with com-
plex eigenvalues, which is why the symmetric estimator has
been frequently used before 2008 until it has been replaced
by reversible maximum likelihood and Bayesian estima-
tors.22,23,28,47,49,50 How do we resolve this problem in the more
general case of variational estimates with arbitrary basis func-
tions χ? Below, we will introduce a solution based on the
Koopman operator theory and dynamic mode decomposition
(DMD).

III. KOOPMAN MODELS OF EQUILIBRIUM KINETICS

A method equivalent to the linear VAC algorithm
described in Refs. 51 and 53 and summarized in Sec. II B
has more recently been introduced in the fluid mechanics
field under the name extended Dynamic Mode Decomposition
(EDMD).72 EDMD also projects the data onto basis functions
and approximates the same eigenvalue and eigenfunctions
like the linear VAC. EDMD was developed independently
of the VAC and is based on Dynamic Mode Decomposition
(DMD).73,75,76 EDMD and DMD approximate components
of the Koopman operator which is a generalization of the
backward operator usually used in molecular kinetics.74,78
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The equivalence between the VAC and EDMD is striking,
because the EDMD algorithm has been derived in a setting
where dynamics are not reversible and may not even pos-
sess a unique stationary distribution. In practice, the EDMD
algorithm effectively performs non-reversible empirical esti-
mates of the covariances (12) and (13) and is used in non-
equilibrium situations. EDMD is thus used in a regime for
which the variational principle does not hold, and yet, it
does make a useful approximation to eigenvalues and eigen-
functions of dynamical operators.72 This has two important
consequences:

1. The linear VAC is also usable for systems or data that are
not reversible and not in equilibrium.

2. We can use ideas from the EDMD and Koopman opera-
tor theory to obtain equilibrium and reversible estimates
from non-equilibrium, non-reversible data.

In this section, we will develop the second point and construct
estimators for equilibrium expectations from non-equilibrium
data. This will allow us to estimate relaxation time scales, slow
collective variables, and equilibrium expectations using arbi-
trary basis sets and without requiring a cluster discretization
as used in MSMs.

A. Koopman operator description
of conformation dynamics

According to the Koopman operator theory,77 the dynam-
ics of a Markov process {xt} can be fully described by an
integral operator Kτ , called Koopman operator, which maps
an observable quantity f (xt) at time t, to its expectation at time
t + τ as

Kτ f (x) = E
[
f (xt+τ) |xt = x

]
=

∫
dy p (x, y; τ) f (y) . (18)

If the dynamics fulfill detailed balance, the spectral com-
ponents {(λi,ψi)} discussed in Section II are in fact the
eigenvalues and eigenfunctions of the Koopman operator,

Kτψi = λiψi. (19)

Notice that the operator description and decomposition of
molecular kinetics can also be equivalently provided by the
forward and backward operators, which propagate ensemble
densities instead of observables.23 We exploit the Koopman
operator in this paper because it is the only one of these oper-
ators that can be reliably approximated from non-equilibrium
data in general. See Section III B and Appendix A for a more
detailed analysis.

Eq. (19) suggests the following way for spectral esti-
mation: First, approximate the Koopman operator from data
and then extract the spectral components from the estimated
operator.

B. Using linear VAC for non-equilibrium
and non-reversible data: Extended dynamic
mode decomposition

Like in the VAC, we can also approximate the Koopman
operator Kτ by its projection Kproj

τ onto the subspace spanned

by basis functions χ which satisfies

Kτ f ≈ Kproj
τ f ∈ span{ χ1, . . . , χm} (20)

for any function f in that subspace. As the Koopman oper-
ator is linear, even if the dynamics are nonlinear, it can be
approximated by a matrix K = (k1, . . . , km) ∈ Rm×m as

Kproj
τ

*
,

m∑
i=1

ci χi
+
-
=

m∑
i=1

cik>i χ, (21)

with

k>i χ = Kproj
τ χi ≈ Kτ χi (22)

representing a finite-dimensional approximation of Kτ χi.
After a few algebraic steps,72 it can be shown that eigenfunc-
tions of Kproj

τ also have the form ψi = b>i χ, and eigenvalues

and eigenfunctions ofKproj
τ can be calculated by the eigenvalue

problem,

KB = BΛ, (23)

where definitions of Λ, B are the same as in (7). Considering
that

E
[
χi (xt+τ) |xt

]
= Kτ χi (xt) ≈ k>i χ (xt) (24)

for each transition pair (xt , xt+τ) in simulations, the matrix
K can be determined via minimizing the mean square error
between k>i χ (xt) and χi (xt+τ),

K = arg min
K

1
N

T−τ∑
t=1

m∑
i=1

k>i χ (xt) − χi (xt+τ)
2

= arg min
K

1
N
‖XK − Y‖2

= Ĉ(0)−1Ĉ (τ) , (25)

where the covariance matrices are given by their direct esti-
mates (12) and (13), and ‖·‖ denotes the Frobenius norm of
matrices.

Based on the above considerations, it makes sense to call
the matrix K together with the basis set χ a Koopman model of
the molecular kinetics. The Koopman model is a generaliza-
tion of an MSM, as it can be constructed from any basis set χ,
not only from characteristic basis sets (Eq. (8)). Nonetheless,
it shares the main features of an MSM as it can be used to
propagate densities according to (20), and its eigenvalues can
be used to compute relaxation time scales and its eigenvectors
can be used to compute slow collective variables. Algorithm 1
summarizes the procedure of computing a nonreversible Koop-
man model from data. This algorithm is equivalent to the linear
VAC and EDMD. If the feature trajectories are mean-free, it
is also equivalent to TICA in feature space.

Please note that this pseudocode is given for illustra-
tive purposes and should not be implemented literally. In
particular, it assumes that the basis functions are linearly
independent so that Ĉ (0) is invertible. In practice, linear
independence can be achieved by de-correlation of basis
functions—see Appendix F and specifically Algorithm 4
there for advice how to practically implement the Koopman
estimator.

The above derivation shows that Koopman estimation
as in Algorithm 1 has a key advantage: Suppose the points
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Algorithm 1. Nonreversible Koopman estimation.

1. Basis-transform input coordinates according to (11).
2. Compute Ĉ (0) = 1

N X>X and Ĉ (τ) = 1
N X>Y.

3. Compute the Koopman model K = Ĉ(0)−1Ĉ (τ).
4. Koopman decomposition: Solve eigenvalue problem KB = BΛ.
5. Output the Koopman model K and spectral components: Eigenvalues
λi and eigenfunctions ψi = b>i χ. Both may have imaginary compon-
ents that are either due to statistical noise or nonreversible dynamics.

{x1, . . . , xT−τ } are sampled from a distribution ρ (x) which
is not equal to the equilibrium distribution µ. Although the
empirical estimates of covariance matrices used in Algorithm 1
are biased with respect to the equilibrium expectations C (0)
and C (τ), they are unbiased and consistent estimates of the
non-equilibrium covariance matrices Eρ

[
χ (xt) χ(xt)>

]
and

Eρ
[
χ (xt) χ(xt+τ)>

]
. Furthermore, the matrix K given by (25)

minimizes the error,∑
i

〈
k>i χ −Kτ χi, k>i χ −Kτ χi

〉
ρ
, (26)

with 〈f , g〉ρ , ∫ dx ρ (x) f (x) g (x), as data size approaches
infinity (see Appendices B and C). Therefore, K is still a
finite-dimensional approximation of Kτ with minimal mean
square error with respect to ρ, which implies that Algorithm 1
is applicable to non-equilibrium data.

C. Koopman reweighting: Estimation of the equilibrium
distribution from non-equilibrium data

Not only is EDMD robust when using non-equilibrium
data, we can also utilize the Koopman matrix K to recover
the equilibrium properties of the molecular system. According
to the principle of importance sampling,82 we can assign a
weight

w(xt) ∝
µ(xt)
ρ(xt)

(27)

to each transition pair (xt , xt+τ) in the simulation data,
such that the equilibrium ensemble average of a function
h (xt , xt+τ) can be consistently estimated by the weighted mean
as

Eµ [h (xt , xt+τ)] ≈

∑T−τ
t=1 w (xt) h (xt , xt+τ)∑T−τ

t=1 w (xt)
. (28)

Based on the finite-dimensional approximation (4) of spectral
components, we can represent the weight function as a linear
combination of basis functions χ,

w (x) = u>χ (x) , (29)

where u satisfies

Ĉ(0)−1K>Ĉ (0) u = u, (30)

i.e., u is the eigenvector of Ĉ(0)−1K>Ĉ (0) with eigenvalue 1,
in the limit of large statistics. (See Appendix B for proofs of
the above equations.)

In practice, the eigenvalue problem (30) cannot be solved
for arbitrary choices of basis sets. If the basis set cannot rep-
resent the constant 1 eigenfunction, (30) does not have an

Algorithm 2. Koopman reweighting.

1. Basis-transform input coordinates according to (11).
2. Compute Ĉ (0) = 1

N X>X, Ĉ (τ) = 1
N X>Y, and K = Ĉ(0)−1Ĉ (τ)

as in Algorithm 1.
3. Compute u as eigenvector of Ĉ(0)−1K>Ĉ (0) with eigenvalue 1,

and normalize it by 1>Xu.
4. Output weights: w (xt) = x>t u.

eigenvalue 1. In order to deal with general basis sets, we have
two options. First, we can seek an approximate solution via
the quadratic programming problem,

minu
Ĉ(0)−1K>Ĉ (0) u − u

2

s.t. 1>Xu = 1
, (31)

where the constraint 1>Xu ensures that
∑T−τ

t=1 w (xt) = 1, and
1 denotes a column vector of ones.

We recommend a simpler way to solve this problem:
Add the constant function 1 to the basis set and change
X and Y as X := [X 1] and Y := [Y 1] correspond-
ingly so that the eigenvalue problem (31) can be exactly
solved. The resulting method to compute equilibrium statis-
tical weights of all samples, w (xt), can be summarized by
Algorithm 2.

Again, this algorithm is simplified for illustrative pur-
poses. In our implementation, we ensure numerical robust-
ness by adding the constant function to the decorrelated basis
set—see Appendix E and Algorithm 5 there.

After the weights w (xt) have been estimated and nor-
malized with

∑T−τ
t=1 w (xt) = 1>Xu= 1, we can compute equi-

librium estimates for given observables f1 (xt) and f2 (xt)
from non-equilibrium data. For example, ensemble aver-
age and time-lagged cross correlation can be approximated
by

Eµ
[
f1 (xt)

]
≈

T−τ∑
t=1

w (xt) · f1(xt), (32)

Eµ
[
f1 (xt) f2 (xt+τ)

]
≈

T−τ∑
t=1

w (xt) · f1 (xt) f2 (xt+τ) . (33)

D. Reversible Koopman models
and eigendecompositions

We now have the tools necessary to compute equi-
librium covariance matrices while avoiding the bias of
forced symmetrization described in Sec. II C and can con-
duct real-valued eigenvalue analysis for reversible dynam-
ics using VAC or TICA. At the same time, our approach
defines an equilibrium estimator of EDMD for time-reversible
processes. We can obtain symmetrized equilibrium covari-
ances from our off-equilibrium data by the following
estimators:

Ĉrev (0) =
1
2

T−τ∑
t=1

w (xt)
(
χ(xt)χ(xt)

> + χ(xt+τ)χ(xt+τ)>
)

=
1
2

(
X>WX + Y>WY

)
, (34)
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Algorithm 3. Reversible Koopman estimation.

1. Basis-transform input coordinates according to (11).
2. Use Koopman reweighting (Algorithm 2) to compute the equilibrium

weights w (xt).
3. Compute Ĉrev (0) and Ĉrev (τ) by (34) and (35).
4. Compute the Koopman model Krev = Ĉrev(0)−1Ĉ rev (τ).
5. Reversible Koopman decomposition: Solve eigenvalue problem

KrevB = BΛ.
6. Output the Koopman model Krev and its spectral components:

Eigenvalues λi and eigenfunctions ψi = b>i χ. These eigenvalues and
eigenfunctions are real-valued.

Ĉrev (τ) =
1
2

T−τ∑
t=1

w (xt)
(
χ(xt)χ(xt+τ)> + χ(xt+τ)χ(xt)

>
)

=
1
2

(
X>WY + Y>WX

)
. (35)

These estimators are based on time-reversibility and the
reweighting approximation (28) for the equilibrium distribu-
tion (see Appendix D for proof). As a result, we obtain a
time-reversible Koopman matrix,

Krev = Ĉrev(0)−1Ĉ rev (τ) . (36)

By comparing (34) and (35) with (14) and (15), it is
apparent that Ĉrev (0) and Ĉrev (τ) are equal to the sym-
metrized direct estimates if weights of data are uniform with
W= diag

(
1
N , . . . , 1

N

)
. The weight function (29) used here can

systematically reduce the bias of the symmetrized estimates
for reversible dynamics. Under some weak assumptions, it can
be shown that the spectral components calculated from Krev

are real-valued and the largest eigenvalue is not larger than 1
even in the existence of statistical noise and modeling error.
Furthermore, the procedure is self-consistent: If the estima-
tion procedure is repeated while starting with weights w (x),
these weights remain fixed. (See Appendix E for more detailed
analysis.)

The estimation algorithm for variationally optimal Koop-
man models of the reversible equilibrium dynamics can be
summarized as Algorithm 3.

As before, this algorithm is presented in a pedagogical
pseudocode. Taken literally, it will suffer from numerical insta-
bilities if Ĉrev (0) is not positive-definite, which can also be
overcome by reducing correlations between basis functions as
mentioned in Section III B—see Appendix F and Algorithm 6
there.

IV. APPLICATIONS

In this section, we compare three different estimators for
molecular kinetics to the same data sets:

1. VAC or TICA in feature space symmetrization of covari-
ance matrices (14) and (15), as proposed before.52,63

Briefly we refer to this estimator as symmetrized VAC
or symmetrized TICA.

2. Nonreversible Koopman estimation (Algorithm 1),
which provides a nonreversible Koopman model whose
eigendecomposition is equivalent to EDMD and (non-
symmetrized) TICA in feature space.

3. Reversible Koopman estimation (Algorithm 3), which is
consistent with the variational approach.51,53

In addition, we compare the estimated equilibrium distribu-
tion provided by Koopman reweighting (Algorithm 2) with
the empirical distribution estimated from direct counting or
histogramming the data in order to demonstrate the usefulness
of the proposed reweighting method.

A. One-dimensional diffusion process

As a first example, we consider a one-dimensional dif-
fusion process {xt} in a double-well potential restricted to
the x-range [0, 2] as shown in Fig. 2(a). In order to validate
the robustness of different estimators, we start all simulations
far from equilibrium, in the region [0, 0.2] (shaded area in
Fig. 2(a)). In order to apply the algorithms discussed here,
we choose a basis set of 100 Gaussian functions with ran-
dom parameters. For more details on the simulation model
and experimental setup, see Appendix G 1.

Fig. 2(b) shows estimates of the slowest relaxation time
scale ITS2 based on 500 independent short simulation tra-
jectories with length 0.2 time units. The largest relaxation
time scale t2 is computed from λ2 as t2 = − τ/ ln |λ2 (τ)| and
is a constant independent of lag time according to (2). For
such non-equilibrium data, the symmetrized VAC significantly
underestimates the relaxation time scale and gives even worse
results with longer lag times. The Koopman models (both
reversible and nonreversible), on the other hand, converge
quickly to the true time scale before τ = 0.01 time units. The
equilibrium distribution of {xt} computed from Algorithm 2

FIG. 2. Estimation results of a one-dimensional diffusion process. (a) Dimen-
sionless energy U (x), where the dashed line represents the border of the two
potential wells I and II. The shaded area denotes the region where initial
states are drawn for simulations. (b) The slowest relaxation time scale esti-
mated by the previously used symmetrized TICA, nonreversible Koopman
estimation (Algorithm 1), and reversible Koopman estimation (Algorithm 3)
with different lag times. (c) Stationary density of states obtained from equilib-
rium probabilities of 100 uniform bins, where the probabilities are estimated
using Koopman reweighting (Algorithm 2, red) and direct counting. (d) Esti-
mates of the equilibrium probability of the potential well I given by direct
counting and the Koopman reweighting (red) with different simulation trajec-
tory lengths. In (b)–(d), solid lines and shaded regions indicate mean values
and one standard derivation error intervals obtained from 30 independent
experiments.
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with lag time 0.01 is shown in Fig. 2(c). In contrast to the
empirical histogram density given by direct counting, the direct
estimator effectively recovers the equilibrium property of the
process from non-equilibrium data.

Fig. 2(d) compares the empirical probability of the poten-
tial well I (i.e., by direct counting of the number of sam-
ples in well I) with the estimate from Koopman reweighting
(Algorithm 2), for different simulation trajectory lengths,
where the lag time is still 0.01 time units and the accumulated
simulation time is kept fixed to be 100. Due to the ergod-
icity of the process, the empirical probability converges to
the true value as the trajectory length increases. The conver-
gence rate, however, is very slow as shown in Fig. 2(d), and
empirical probability is close to the true value only for tra-
jectories longer than 2 time units. When using the reweighting
method proposed here, the estimated probability is robust with
respect to changes in trajectory length, and accurate even for
very short trajectories.

B. Two-dimensional diffusion process

Next, we study a two-dimensional diffusion process
{(xt , yt)} which has three potential wells as shown in
Fig. 3(a), where all simulations are initialized with (x0, y0) ∈
[−2,−1.5]×[−1.5, 2.5], and the set of basis functions for spec-
tral estimation consists of 100 Gaussian functions with random
parameters (see Appendix G 2 for details).

We generate 8000 short simulation trajectories with length
1.25 and show the empirical free energy of the simulation
data in Fig. 3(b). Comparing Figs. 3(b) and 3(a), it can be
seen that most of the simulation data are distributed in the
area x ≤ 0 and the empirical distribution of simulations is
very different from the equilibrium distribution. Therefore,

eigenvalues/time scales and eigenfunctions estimated by the
symmetrized VAC have large errors, whereas the nonreversible
and reversible Koopman model provides accurate eigenval-
ues/time scales and eigenfunctions (Figs. 3(d) and 3(f)). More-
over the equilibrium density can be recovered with high accu-
racy using Koopman reweighting, although the data are far
from equilibrium (Fig. 3(c)).

For such a two-dimensional process, it is also interest-
ing to investigate the slow collective variables predicted by
TICA, i.e., directly using the x and y coordinates as basis func-
tions. Fig. 3(a) displays the TICA components from the exact
equilibrium distribution with lag time τ = 0.01. Notice that
the slowest mode is parallel to x-axis, which is related to tran-
sitions between potential wells I and II, and the second IC is
parallel to the y-axis, which is related to transitions between
{I,II} and III. However, if we extract ICs from simulation
data by using TICA with symmetrized covariance matrices,
the result is significantly different as shown in Fig. 3(b),
where the first IC characterizes transitions between I and
III. The ICs given by nonreversible and reversible Koopman
models (Algorithms 1 and 3 here) can be seen in Fig. 3(c).
They are still different from those in Fig. 3(a) because the
equilibrium distribution is difficult to approximate with only
linear basis functions, but much more accurate than the esti-
mates obtained by the previously used symmetric estimator in
Fig. 3(b).

Fig. 3(e) shows the estimation errors of estimated equilib-
rium distribution obtained by using simulations with different
trajectory lengths, where the accumulated simulation time
is kept fixed to be 104, the lag time for estimators is τ = 0.005,
and the error is evaluated as the total variation distance between
the estimated probability distributions of the three potential
wells and the true reference. Fig. 3(f) shows angles of linear

FIG. 3. Estimation results of a two-dimensional diffusion process. (a) Free energy of the process, where the dashed line represents the border of potential wells I,
II, and III. The shaded area denotes the region where initial states are drawn for simulations, and the two linear ICs obtained from TICA with exact statistics. (b)
Free energies computed from a histogram of the simulation data (direct counting). Arrows show the directions of TICA components computed from symmetrized
TICA. (c) Free energies computed from Koopman reweighting (Algorithm 2). Arrows show the directions of the slowest modes computed from a reversible
(solid arrows) and nonreversible (dashed arrows) Koopman estimation using {x, y} as a basis set. (d) Estimates of the two slowest relaxation time scales. (e)
Estimation errors of equilibrium distributions using direct counting or the Koopman model (red). (f) Error in the angles of estimated eigenfunctions. Shaded
area shows the standard deviation computed from 30 independent simulations.
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FIG. 4. Results for MD simulations of
the trypsin-benzamidine binding pro-
cess. ((a)–(c)) Relaxation time scales
are estimated as a function of lag time.
(a) TICA in feature space with the pre-
viously used symmetric estimator, (b)
nonreversible Koopman model, equiv-
alent to TICA in feature space without
symmetrization (Algorithm 1 here), (c)
variational reversible Koopman model
suggested here (Algorithm 3). (d)–(f)
Free energy landscapes (negative loga-
rithm of the sampled densities) plotted
on the two slowest process eigenfunc-
tions. For all three methods, minima 1-3
correspond to the same macro-states of
the system. Representative structures of
these states are shown in (g)–(i). State
1 represents the ligand being unbound
or loosely attached to the protein. States
2 and 3 are different conformational
arrangements of the bound state, in par-
ticular of the binding loop including Trp
215.16

ICs approximated from the same simulation data with lag
time τ = 0.01. Both of the figures clearly demonstrate the
superiority of the Koopman models suggested here.

C. Protein-ligand binding

We revisit the binding process of benzamidine to trypsin
which was studied previously in Refs. 11 and 71. The data
set consists of 52 trajectories of 2 µs and four trajectories
of 1 µs simulation time, resulting in a total simulation time
of 108 µs. From the simulations, we extract a feature set of
223 nearest neighbor heavy-atom contacts between all trypsin
residues and the ligand. In this feature space, we then perform
TICA using the symmetrized estimate (previous standard)
and estimate a nonreversible Koopman model (Algorithm 1)
and a reversible Koopman model (Algorithm 3). In order to
obtain uncertainties, we compute 100 bootstrapping estimates
in which outliers were rejected. In Figures 4(a)–4(c), we show
the three slowest implied time scales as estimated by the three
approaches discussed above. We observe that both the Koop-
man models provide a larger slowest implied time scale than
symmetrized TICA. The slowest time scale estimated by the
reversible estimator converges on relatively long lag times.
This is likely due to the fact that the trypsin-benzamidine
binding kinetics involves internal conformational changes of
trypsin.16 The first TICA components of the direct estimate
are coincidentally purely real here. The eigenvectors used
for the dimensionality reduction were estimated at lag time
τ = 100 ns. The projections are qualitatively similar, reveal-
ing three minima of the landscape, labeled 1, 2, and 3. In
all three cases, these centers correspond to the same macro-
states of the system, shown underneath in Figures 4(g)–4(i).

Center 1 corresponds to the ligand being either unbound or
loosely attached to the protein. The other two states are dif-
ferent conformational arrangements of the bound state of the
ligand.

V. CONCLUSION

Using dynamic mode decomposition theory, we have
shown that the variational approach of conformation dynamics
and the time-lagged independent component analysis can be
made with small bias even if just empirical out-of-equilibrium
estimates of the covariance matrices are available, i.e., they
can be applied to ensembles of short MD simulations start-
ing from an arbitrary starting point. A crucial point is that the
forceful symmetrization of the empirical covariances practiced
in previous studies must be avoided.

In order to facilitate a bias-corrected symmetric esti-
mate of covariance matrices, we have proposed a Koopman
reweighting technique in which the weights of sampled con-
figurations can be estimated using a first pass over the data,
during which empirical covariance matrices must be estimated.
These weights can be applied in order to turn the empirical
(out-of-equilibrium) estimates of covariance matrices into esti-
mates of the equilibrium covariance matrices. These matrices
can then be symmetrized without introducing a bias from the
empirical distribution, resulting in real-valued eigenvalue and
eigenfunction estimates.

With these algorithms, the variational approach and
thus also the TICA algorithm inherit the same benefits that
MSMs have enjoyed since nearly a decade: we can generate
optimal and robust reversible and nonreversible estimates of
the equilibrium kinetics from swarms of short trajectories



154104-11 Wu et al. J. Chem. Phys. 146, 154104 (2017)

not started from equilibrium. Although this work focuses
on the estimation of eigenvalues and eigenfunctions of the
Koopman operator, the proposed Algorithms 1 and 3 pro-
vide Koopman models, which are discrete approximations of
the Koopman operator, and that be used for other purposes,
such as the propagation of densities. Koopman models are
generalizations of Markov state models using arbitrary basis
functions.

Besides the application to molecular kinetics high-
lighted in this paper, the Koopman reweighting principle
described in Algorithm 2 can be used to compute variationally
optimal estimates of any equilibrium property (expectation
values, distributions) from out-of-equilibrium data using an
approach that involves arbitrary sets of basis functions. While
the viability of this approach critically depends on the suit-
ability of the basis functions employed, it offers a very general
way to computing equilibrium expectations that may lead to
other applications and extensions in future studies.

APPENDIX A: DYNAMICAL OPERATORS

Besides the Koopman operator Kτ , the conformation
dynamics of a molecular system can also be described by the
forward operator Pτ and backward operator, or called trans-
fer operator, Tτ ,23 which describe the evolution of ensemble
densities as

pt+τ (x) = Pτpt (x)

=

∫
dy p (y, x; τ) pt (y) (A1)

and

ut+τ (x) = Tτut (x)

=

∫
dy

µ (y)
µ (x)

p (y, x; τ) ut (y) , (A2)

where pt (x) denotes the probability density of xt and
ut (x) = µ(x)−1pt (x) denotes the density weighted by the
inverse of the stationary density. The relationship between the
three operators can be summarized as follows:

1. Kτ is adjoint to Tτ in the sense of

〈Kτ f1, f2〉µ = 〈f1, Tτ f2〉µ (A3)

for any f1, f2 ∈ L2
µ. If {xt} is reversible, Kτ and Tτ are

self-adjoint with respect to 〈·, ·〉µ, i.e., Kτ = Tτ .

2. Defining the multiplication operator Mµ : L2
µ 7→ L2

µ−1 as
Mµf (x) = µ (x) · f (x), the Markov propagator Pτ can
be expressed as

Pτ =MµTτM−1
µ . (A4)

Under the detailed balance condition, Pτ is self-adjoint
with respect to 〈·, ·〉µ−1 .

We can also find the finite-dimensional approximation
Pτ χi ≈p>i χ and Tτ χi ≈ t>i χ of Pτ and Tτ by minimizing
errors

∑
i 〈p>i χ − Pτ χi, p>i χ −Pτ χi〉ω and

∑
i〈t>i χ − Tτ χi,

t>i χ − Tτ χi〉ω for some weight function ω (x). However,
it is still unknown how to select the weight functions
so that the approximation errors can be easily computed
from simulation data as in the approximation of Kτ . For

example, if we select ω (x) = ρ(x)−1, the approximation error
of Pτ is∑

i

〈
p>i χ − Pτ χi, p>i χ − Pτ χi

〉
ρ−1

=
∑

i

〈
p>i χ, p>i χ

〉
ρ−1 − 2

∑
i

〈
p>i χ,Pτ χi

〉
ρ−1

+
∑

i

〈Pτ χi,Pτ χi〉ρ−1 =
∑

i

Eρ


p>i χ (xt) χ(xt)>pi

ρ(xt)2



− 2
∑

i

Eρ
[

p>i χ (xt+τ) χi (xt)

ρ (xt+τ) ρ (xt)

]
+
∑

i

〈Pτ χi,Pτ χi〉ρ−1 ,

(A5)

where the last term on the right hand side is a constant inde-
pendent of pi, and the computation of the first two terms is
infeasible for unknown ρ. For Tτ , the weight function is gen-
erally set to be ω = ρ, and the corresponding approximation
error is then∑

i

〈
t>i χ − Tτ χi, t>i χ − Tτ χi

〉
ρ

=
∑

i

〈
t>i χ, t>i χ

〉
ρ
− 2

∑
i

〈
t>i χ, Tτ χi

〉
ρ

+
∑

i

〈Tτ χi, Tτ χi〉ρ =
∑

i

Eρ
[
t>i χ (xt) χ(xt)

>ti

]

− 2
∑

i

Eρ
[
ρ (xt+τ) µ (xt)
µ (xt+τ) ρ (xt)

· t>i χ (xt+τ) χi (xt)

]

+
∑

i

〈Tτ χi, Tτ χi〉ρ (A6)

which is difficult to estimate unless the empirical distribution ρ
is consistent with µ or the system is reversible. (For reversible
systems, Kτ = Tτ and the finite-dimensional approximation
of Kτ is therefore also that of Tτ .) In general cases, only the
Koopman operator can be reliably estimated from the non-
equilibrium data.

APPENDIX B: PROPERTIES OF THE EMPIRICAL
DISTRIBUTION

We first consider the case where the simulation data
consist of M independent trajectories {x1

t }
T
t=1, . . . , {xK

t }
T
t=1 of

length T and the initial state xk
0

iid
∼ p0 (x). In this case, ρ can be

given by

ρ =
1

T − τ

T−τ∑
t=1

Ptp0, (B1)

wherePt denotes the forward operator defined in Appendix A.
For an arbitrary function h of xt and xt+τ , we have

E


1
K (T − τ)

K∑
k=1

T−τ∑
t=1

h
(
xk

t , xk
t+τ

)

=
1

T − τ

T−τ∑
t=1

EPtp0 [h (xt , xt+τ)] = Eρ [h (xt , xt+τ)] (B2)

and
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1
K (T − τ)

K∑
k=1

T−τ∑
t=1

h
(
xk

t , xk
t+τ

)
=

1
T − τ

T−τ∑
t=1

*
,

1
K

K∑
k=1

h
(
xk

t , xk
t+τ

)+
-

p
→

1
T − τ

T−τ∑
t=1

EPtp0 [h (xt , xt+τ)] = Eρ [h (xt , xt+τ)] (B3)

as M → ∞, where “
p
→” denotes the convergence in probability. Therefore Ĉ (0) and Ĉ (τ) are unbiased and consistent estimates

of

Cρ (0) = Eρ
[
χ (xt) χ(xt)

>
]

, (B4)

Cρ (τ) = Eρ
[
χ (xt) χ(xt+τ)>

]
. (B5)

The importance sampling approximation provided by (28) is also consistent because∑K
k=1

∑T−τ
t=1 w

(
xk

t

)
h
(
xk

t , xk
t+τ

)
∑K

k=1
∑T−τ

t=1 w
(
xk

t

) =

1
K(T−τ)

∑K
k=1

∑T−τ
t=1 w

(
xk

t

)
h
(
xk

t , xk
t+τ

)
1

K(T−τ)

∑K
k=1

∑T−τ
t=1 w

(
xk

t

) p
→

Eρ [w (xt) h (xt , xt+τ)]

Eρ [w (xt)]

=

!
dxdy µ(x)

ρ(x) ρ (x) p (x, y) h (xt , xt+τ)∫
dx µ(x)

ρ(x) ρ (x)
= Eµ [h (xt , xt+τ)] . (B6)

If we further assume that the finite-dimensional approxi-
mation (4) of spectral components is exact, i.e., {xt} has
only m nonzero eigenvalues and ψi =b>i χ holds exactly for
i = 1, . . . , m, we can get

ρ (x)
µ (x)

=
1

T − τ

T−τ∑
t=1

Ptp0 (x)
µ (x)

=
1

T − τ

T−τ∑
t=1

∑m
i=1 λi (t) µ (x)ψi (x) 〈ψi, p0〉

µ (x)

=



∑T−τ
t=1 λ1 (t)

T − τ
〈ψ1, p0〉 , . . . ,

∑T−τ
t=1 λm (t)

T − τ
〈ψm, p0〉


× B>χ (x) (B7)

which implies that (29) can be exactly satisfied with

u = B


∑T−τ
t=1 λ1 (t)

T − τ
〈ψ1, p0〉 , . . . ,

∑T−τ
t=1 λm (t)

T − τ
〈ψm, p0〉



>

.

(B8)

Moreover, under the finite-dimensional assumption, we have

Kτ χi (x) =
∫

dy p (x, y; τ) χi (y)

=

∫
dy

m∑
i=1

λi (t) µ (y)ψi (y)ψi (x) χi (y)

= *
,

∫
dy

m∑
i=1

λi (t) µ (y)ψi (y) χi (y)+
-

b>i χ (x) .

(B9)

Thus there exists a matrix K = (k1, . . . , km) so that Kτχ
= K>χ holds exactly with Kτχ = (Kτ χ1, . . . ,Kτ χm)>.
Considering that

Eµ
[
χ (xt+τ)

]
= Eµ

[
Kτχ (xt)

]
= Eµ

[
K>χ (xt)

]

=

∫
dx u>χ (x) · ρ (x) ·K>χ (x)

= K>
(∫

dx ρ (x) χ (x) χ(x)>
)

u

= K>Cρ (0) u (B10)

and

Eµ
[
χ (xt)

]
=

∫
dx u>χ (x) · ρ (x) · χ (x)

= Cρ (0) u, (B11)

we can obtain from Eµ
[
χ (xt+τ)

]
= Eµ

[
χ (xt)

]
that

Cρ(0)−1K>Cρ (0) u = u. (B12)

Since Cρ(0)−1K>Cρ (0) is similar to K> and the largest
eigenvalue of K is 1, we can conclude that u is
the eigenvector of Cρ(0)−1K>Cρ (0) with the largest
eigenvalue.

In more general cases, where, for example, trajectories
are generated with different initial conditions and different
lengths, the similar conclusions can be obtained by considering
that

Ptp0 (x)
µ (x)

=
[
λ1 (t) 〈ψ1, p0〉 , . . . , λm (t) 〈ψm, p0〉

]
×B>χ (x) ∈ span{ χ1, . . . , χm} (B13)

for all p0 and t if the finite-dimensional approximation (4)
is assumed to be exact, i.e., the ratio between ρ and µ can
always be expressed as a linear combination of χ under this
assumption.
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APPENDIX C: LIMIT OF THE KOOPMAN MODEL
APPROXIMATION ERROR

The mean square error of the nonreversible Koopman
model approximation is (see Ref. 72)

MSE =
1
N

T−τ∑
t=1

m∑
i=1

k>i χi (xt) − χi (xt+τ)
2
. (C1)

Under the condition N → ∞, we have

MSE =
m∑

i=1

∫
dx ρ (x)

(
k>i χ −Kτ χi

)> (
k>i χ −Kτ χi

)
=

m∑
i=1

〈
k>i χ −Kτ χi, k>i χ −Kτ χi

〉
ρ
.

APPENDIX D: PROOF OF (34) AND (35)

If {xt} is a time-reversible stochastic process, the time-
lagged cross correlation between two arbitrary observable
quantities f1 (xt) and f2 (xt) at equilibrium is symmetric in the
sense of Eµ

[
f1 (xt) f2 (xt+τ)

]
= Eµ

[
f2 (xt) f1 (xt+τ)

]
. We can

obtain that

C (0) = Eµ
[
χ (xt) χ(xt)

>
]

=
1
2
Eµ

[
χ (xt) χ(xt)

> + χ (xt+τ) χ(xt+τ)>
]

≈
1
2

T−τ∑
t=1

w (xt)
(
χ (xt) χ(xt)

> + χ (xt+τ) χ(xt+τ)>
)

and

C (τ) = Eµ
[
χ (xt) χ(xt+τ)>

]

=
1
2
Eµ

[
χ (xt) χ(xt+τ)> + χ (xt+τ) χ(xt)

>
]

≈
1
2

T−τ∑
t=1

w (xt)
(
χ (xt) χ(xt+τ)> + χ (xt+τ) χ(xt)

>
)

,

where the approximation steps in the above equations come
from (28).

APPENDIX E: ANALYSIS OF THE REVERSIBLE
ESTIMATOR

Here we analyze properties of the reversible estimator
under the following assumptions.

Assumption 1. The constant function 1 ∈ span{ χ1, . . . ,
χm}, i.e., there is a vector v so that v>χ = 1.

Assumption 2. Ĉ (0), Ĉrev (0) are positive-definite, and all
weights w (xt) are positive.

Under Assumption 2, Krev is similar to

Ĉrev(0)
1
2 KrevĈrev(0)−

1
2 = Ĉrev(0)−

1
2 Ĉrev (τ) Ĉrev(0)−

1
2 , (E1)

where Ĉrev(0)
1
2 denotes the symmetric square root of Ĉrev (0).

Therefore the eigenvalue problem of Krev can be solved in the

real field. In addition, for any λ and nonzero b which satisfy
Krevb = λb, we have

|λ| =
�����
b>Ĉrev (τ) b

b>Ĉrev (0) b

�����

=

���b
>X>WYb + b>Y>WXb���

b>X>WXb + b>Y>WYb
≤ 1

which implies that the spectral radius of Krev is not larger
than 1.

Under Assumption 1, the matrix K given by (25) satisfies

Kv = Ĉ(0)−1Ĉ (τ) v

= Ĉ(0)−1
(

1
N

X>Yv
)

= Ĉ(0)−1
(

1
N

X>Xv
)

= Ĉ(0)−1Ĉ (0) v

= v. (E2)

So 1 is an eigenvalue of K and the eigenvalue problem (30)
can be exactly solved.

We now show that the weight function w (x) remains fixed
after replacing K by Krev, i.e.,

Ĉ(0)−1K>revĈ (0) u = u (E3)

for u satisfying 1>Xu = 1 and

Ĉ(0)−1K>Ĉ (0) u = u⇔ Y>Xu = X>Xu. (E4)

Considering that

Ĉrev (0) v =
1
2

(
X>WX + Y>WY

)
v

=
1
2

(
X>Xu + Y>Xu

)
= NĈ (0) u. (E5)

Thus,

Ĉ(0)−1K>revĈ (0) u =
1
N

Ĉ(0)−1Ĉ rev (τ) Ĉrev(0)−1Ĉ rev (0) v

=
1

2N
Ĉ(0)−1

(
X>WY + Y>WX

)
v

= u. (E6)

APPENDIX F: DE-CORRELATION
OF BASIS FUNCTIONS

In Section III B and Algorithm 1, the basis functions χ
are assumed to be linearly independent of the sampled data so
that Ĉ (0) is invertible and the matrix K given in (25) is well
defined. In some publications, e.g., Ref. 72, K is calculated as
K = Ĉ(0)†Ĉ (τ) by using the pseudo-inverse Ĉ(0)† of Ĉ (0);
however, this approach cannot completely avoid numerical
instabilities. In this paper, we utilize principal component anal-
ysis (PCA)83 to explicitly reduce correlations between basis
functions as follows: First, we compute the empirical mean
of basis functions and the covariance matrix of mean-centered
basis functions,
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Algorithm 4. Nonreversible Koopman estimation (with de-correlation of
basis functions).

1. Basis-transform input coordinates according to (11).
2. Compute π and COV by (F1) and (F2).
3. Let χ := DC

[
χ |π, COV

]
, and recalculate X and Y according to the

new basis functions.
4. Compute the matrix K = 1

N X>Y and solve the eigenvalue problem
KB = BΛ.

5. Output spectral components: Eigenvalues λi and eigenfunctions
ψi = b>i χ.

π =
1
N

X>1, (F1)

COV =
1
N

X>X − ππ>. (F2)

Next, perform the truncated eigendecomposition of the covari-
ance matrix as

COV ≈ Q>d SdQd , (F3)

where the diagonal of matrix Sd contains all positive eigenval-
ues that are larger than ε0 and absolute values of all negative
eigenvalues (ε0 = 10−10 in our applications). Last, the new
basis functions are given by

χnew =



S−0.5
d Qd

(
χ − π

)
1


. (F4)

Here S−0.5
d Qd

(
χ − π

)
is the PCA whitening transformation

of the original basis functions, which transforms χ into all
available principal components and scales each component to
have a variance of 1, and the constant function 1 is added to
the basis function so that the eigenvalue problem (30) in the
estimation of equilibrium distribution can be exactly solved
(see Appendix E). It can be verified that the direct estimate
Ĉ (0) of the covariance matrix obtained from χnew (xt) is an
identity matrix. The corresponding estimate of the Koopman
operator is given by K = Ĉ (0) = 1

N X>Y.
For convenience of notation, we denote the transformation

(F4) by

χnew = DC
[
χ |π, COV

]
. (F5)

Then the nonreversible Koopman estimation, which also per-
form EDMD, linear VA, and TICA in feature space, can be
robustly implemented in Algorithm 4.

Furthermore, Koopman reweighting (Algorithm 2) can be
robustly implemented in Algorithm 5.

Similarly, we can also guarantee the positive-definiteness
of Ĉrev (0) by de-correlation of basis functions based on the

Algorithm 5. Koopman reweighting (with de-correlation of basis functions).

1. Basis-transform input coordinates according to (11).
2. Compute K as in Algorithm 4.
3. Compute u by solving K>u = u and normalize it by 1>Xu.
4. Output weights: w (xt) = x>t u.

Algorithm 6. Variational Koopman model and eigendecomposition (with
de-correlation of basis functions).

1. Basis-transform input coordinates according to (11).
2. Compute u as in Algorithm 5 and let W = diag (Xu).
3. Compute πeq and COVeq by (F7) and (F8).

4. Let χ := DC
[
χ |πeq, COVeq

]
, and recalculate X and Y according to

the new basis functions.

5. Compute Krev = Ĉrev (τ) = 1
2

(
X>WY + Y>WX

)
and solve the

eigenvalue problem KrevB = BΛ.
6. Output spectral components: Eigenvalues λi and eigenfunctions

ψi = b>i χ.

transformation,

χnew = DC
[
χ |π eq, COVeq

]
, (F6)

where

πeq =
1
2

(X + Y)>W1, (F7)

COVeq =
1
2

(
X>WX + Y>WY

)
− πeqπ

>
eq (F8)

are the estimated equilibrium mean and covariance matrix of
χ. The corresponding reversible Koopman estimator which
is consistent with the variational approach can be robustly
implemented in Algorithm 6.

APPENDIX G: SIMULATION MODELS AND SETUPS
1. One-dimensional diffusion process

The diffusion processes in Section IV A are driven by the
Brownian dynamics,

dxt = −∇U(xt)dt +
√

2β−1dWt , (G1)

where β = 0.3, the time step is 0.002, x0 is uniformly drawn in
[0, 0.2], and the potential function is given by

U (x) =

∑5
i=1 (|x − ci | + 0.001)−2ui∑5

i=1 (|x − ci | + 0.001)−2
(G2)

with c1:5 = (�0.3, 0.5, 1, 1.5, 2.3). Simulations are implemented
by a reversibility preserving numerical discretization scheme
proposed in Ref. 84 with bin size 0.02. The basis functions for
estimators are chosen to be

χi (x) = exp
(
−(wix + bi)

2
)

, (G3)

where wi and bi are randomly drawn in [�1, 1] and [0, 1].

2. Two-dimensional diffusion process

The dynamics of the two-dimensional diffusion process in
Section IV B has the same form as (G1), where β = 0.5, sample
interval is 0.05, x0 = (x0, y0) is uniformly drawn in [−2,−1.5]
× [−1.5, 2.5], and the potential function is chosen as in Ref. 85
by
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U (x, y) = 3 exp *
,
−x2 −

(
y −

1
3

)2
+
-
− 3 exp *

,
−x2 −

(
y −

5
3

)2
+
-

− 5 exp
(
−(x − 1)2 − y2

)
− 5 exp

(
−(x + 1)2 − y2

)
+

1
5

x4 +
1
5

(
y −

1
3

)4

. (G4)

Simulations are implemented by the same algorithm as in
Appendix G 1 with bin size 0.2 × 0.2. The basis functions
for estimators are also Gaussian functions,

χi (x) = exp
(
−
(
w>i x + bi

)2
)

, (G5)

with random weights wi ∈ [−1, 1] × [−1, 1] and bi ∈ [0, 1].
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34M. Sarich, F. Noé, and C. Schütte, Multiscale Model. Simul. 8, 1154

(2010).
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50B. Trendelkamp-Schroer and F. Noé, J. Phys. Chem. 138, 164113 (2013).
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