98 research outputs found

    A primary cell and organoid platform for evaluating pharmacological responses in mammary epithelial cells

    Get PDF
    An essential process in predicting the in vivo pharmacological activity of a candidate molecule involves the evaluation of target responses using established model systems. While these models largely comprise immortalized cells, which are often serially passaged as monolayers on uniformly stiff substrates and are modified to overexpress one or more components of the pathway-of-interest, the importance of cell identity, heterogeneity, and three-dimensional (3D) context to target response is gaining increasing attention. Here, we assess intracellular calcium responses in mouse mammary epithelial cells in three distinct model systems: 3D primary organoids, 2D primary epithelial cells, and 2D immortalized cells. Specifically, we assess intracellular calcium responses to a number of extracellular signals implicated in the regulation of basal (or myoepithelial) cell function. These findings provide further insights into cell type and context-specific pharmacological responses in mammary epithelial cells and highlight the opportunities and challenges in the adoption of architecturally complex and heterogeneous in vitro assays in pharmacological research

    An element for development: calcium signaling in mammalian reproduction and development

    Get PDF
    Life begins with calcium. It is the language that a sperm cell uses to respond to instructions from the female reproductive tract to alter its swimming pattern and gain the force required to penetrate the outer layers of the oocyte. The first heartbeat transpires from spontaneous calcium oscillations in embryonic cardiomyocytes. The dynamic balance of calcium between auditory hair cells and the fluid they bathe in enables us to hear our first sound, and our interpretation and response to this sound requires rapid calcium flux through neuronal voltage-sensitive calcium channels. Calcium signaling can decode and integrate informational cues from both the chemical and mechanical cellular microenvironment to drive the form and function of many mammalian organ-systems. Here, we highlight roles for the intracellular calcium signal in the reproductive- and developmental- biology of mammals. A greater appreciation of the signaling pathways that initiate and support life has wide-ranging significance for the fields of reproductive science, neonatology and regenerative medicine. Furthermore, as developmental programs are often reactivated in cancer, an improved understanding of the signaling pathways that underpin mammalian development has important implications for cancer research

    Multiscale imaging of basal cell dynamics in the functionally mature mammary gland

    Get PDF
    The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command

    Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods

    Get PDF
    Background\textbf{Background}: High-resolution 3D imaging of intact tissue facilitates cellular and subcellular analyses of complex structures within their native environment. However, difficulties associated with immunolabelling and imaging fluorescent proteins deep within whole organs have restricted their applications to thin sections or processed tissue preparations, precluding comprehensive and rapid 3D visualisation. Several tissue clearing methods have been established to circumvent issues associated with depth of imaging in opaque specimens. The application of these techniques to study the elaborate architecture of the mouse mammary gland has yet to be investigated. Methods\textbf{Methods}: Multiple tissue clearing methods were applied to intact virgin and lactating mammary glands, namely 3DISCO, SeeDB, CUBIC and PACT. Using confocal, twophoton and light sheet microscopy, their compatibility with wholemount immunofluorescent labelling and 3D imaging of mammary tissue was examined. In addition, their suitability for the analysis of mouse mammary tumours was also assessed. Results\textbf{Results}: Varying degrees of optical transparency, tissue preservation and fluorescent signal conservation were observed between the different clearing methods. SeeDB and CUBIC protocols were considered superior for volumetric fluorescence imaging and wholemount histochemical staining, respectively. Techniques were compatible with 3D imaging on a variety of platforms, enabling visualisation of mammary ductal and lobulo-alveolar structures at vastly improved depths in cleared tissue. Conclusions\textbf{Conclusions}: The utility of whole-organ tissue clearing protocols was assessed in the mouse mammary gland. Most methods utilised affordable and widely available reagents, and were compatible with standard confocal microscopy. These techniques enable high-resolution, 3D imaging and phenotyping of mammary cells and tumours in situ\textit{in situ}, and will significantly enhance our understanding of both normal and pathological mammary gland development.This work was supported by a grant from the Medical Research Council (MRC) program grant no. MR/J001023/1 (B.L-L. and C.J.W.). F.M.D. was funded by a National Health and Medical Research Council CJ Martin Biomedical Fellowship (GNT1071074). O.B.H. was funded by a Wellcome Trust PhD Studentship (105377/Z/14/Z). J.R.H was funded by an MRC research grant no. MR/K011014/1. F.C.L. was funded by Cancer Research UK and M.P. was funded by the MRC-LMB (MC_U105178788).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by BioMed Central

    Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods.

    Get PDF
    BACKGROUND: High-resolution 3D imaging of intact tissue facilitates cellular and subcellular analyses of complex structures within their native environment. However, difficulties associated with immunolabelling and imaging fluorescent proteins deep within whole organs have restricted their applications to thin sections or processed tissue preparations, precluding comprehensive and rapid 3D visualisation. Several tissue clearing methods have been established to circumvent issues associated with depth of imaging in opaque specimens. The application of these techniques to study the elaborate architecture of the mouse mammary gland has yet to be investigated. METHODS: Multiple tissue clearing methods were applied to intact virgin and lactating mammary glands, namely 3D imaging of solvent-cleared organs, see deep brain (seeDB), clear unobstructed brain imaging cocktails (CUBIC) and passive clarity technique. Using confocal, two-photon and light sheet microscopy, their compatibility with whole-mount immunofluorescent labelling and 3D imaging of mammary tissue was examined. In addition, their suitability for the analysis of mouse mammary tumours was also assessed. RESULTS: Varying degrees of optical transparency, tissue preservation and fluorescent signal conservation were observed between the different clearing methods. SeeDB and CUBIC protocols were considered superior for volumetric fluorescence imaging and whole-mount histochemical staining, respectively. Techniques were compatible with 3D imaging on a variety of platforms, enabling visualisation of mammary ductal and lobulo-alveolar structures at vastly improved depths in cleared tissue. CONCLUSIONS: The utility of whole-organ tissue clearing protocols was assessed in the mouse mammary gland. Most methods utilised affordable and widely available reagents, and were compatible with standard confocal microscopy. These techniques enable high-resolution, 3D imaging and phenotyping of mammary cells and tumours in situ, and will significantly enhance our understanding of both normal and pathological mammary gland development.This work was supported by a grant from the Medical Research Council (MRC) program grant no. MR/J001023/1 (B.L-L. and C.J.W.). F.M.D. was funded by a National Health and Medical Research Council CJ Martin Biomedical Fellowship (GNT1071074). O.B.H. was funded by a Wellcome Trust PhD Studentship (105377/Z/14/Z). J.R.H was funded by an MRC research grant no. MR/K011014/1. F.C.L. was funded by Cancer Research UK and M.P. was funded by the MRC-LMB (MC_U105178788).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by BioMed Central

    CSF1R-dependent macrophages control postnatal somatic growth and organ maturation

    Get PDF
    Homozygous mutation of the Csf1r locus (Csf1rko) in mice, rats and humans leads to multiple postnatal developmental abnormalities. To enable analysis of the mechanisms underlying the phenotypic impacts of Csf1r mutation, we bred a rat Csf1rko allele to the inbred dark agouti (DA) genetic background and to a Csf1r-mApple reporter transgene. The Csf1rko led to almost complete loss of embryonic macrophages and ablation of most adult tissue macrophage populations. We extended previous analysis of the Csf1rko phenotype to early postnatal development to reveal impacts on musculoskeletal development and proliferation and morphogenesis in multiple organs. Expression profiling of 3-week old wild-type (WT) and Csf1rko livers identified 2760 differentially expressed genes associated with the loss of macrophages, severe hypoplasia, delayed hepatocyte maturation, disrupted lipid metabolism and the IGF1/IGF binding protein system. Older Csf1rko rats developed severe hepatic steatosis. Consistent with the developmental delay in the liver Csf1rko rats had greatly-reduced circulating IGF1. Transfer of WT bone marrow (BM) cells at weaning without conditioning repopulated resident macrophages in all organs, including microglia in the brain, and reversed the mutant phenotypes enabling long term survival and fertility. WT BM transfer restored osteoclasts, eliminated osteopetrosis, restored bone marrow cellularity and architecture and reversed granulocytosis and B cell deficiency. Csf1rko rats had an elevated circulating CSF1 concentration which was rapidly reduced to WT levels following BM transfer. However, CD43hi non-classical monocytes, absent in the Csf1rko, were not rescued and bone marrow progenitors remained unresponsive to CSF1. The results demonstrate that the Csf1rko phenotype is autonomous to BM-derived cells and indicate that BM contains a progenitor of tissue macrophages distinct from hematopoietic stem cells. The model provides a unique system in which to define the pathways of development of resident tissue macrophages and their local and systemic roles in growth and organ maturation

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    Background: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. Methods: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. Findings: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. Interpretation: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. Funding: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript
    • …
    corecore