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Mammary gland development begins in the embryo and continues throughout the
reproductive life of female mammals. Tissue macrophages (Mφs), dependent on signals
from the Mφ colony stimulating factor 1 receptor (CSF1R), have been shown to
regulate the generation, regression and regeneration of this organ, which is central for
mammalian offspring survival. However, the distribution of Mφs in the pre- and post-
natal mammary gland, as it undergoes distinct phases of development and regression,
is unknown or has been inferred from immunostaining of thin tissue sections. Here, we
used optical tissue clearing and 3-dimensional imaging of mammary tissue obtained
from Csf1r-EGFP mice. Whilst tissue Mφs were observed at all developmental phases,
their abundance, morphology, localization and association with luminal and basal
epithelial cells exhibited stage-specific differences. Furthermore, sexual dimorphism
was observed at E14.5, when the male mammary bud is severed from the overlying
epidermis. These findings provide new insights into the localization and possible
functions of heterogeneous tissue Mφ populations in mammogenesis.

Keywords: mammary gland, macrophages, development, embryonic mammary stem cells, adult mammary stem
cells, stem cell niche

INTRODUCTION

Mammary gland development is phasic, with distinct developmental periods occurring in the
embryo, at puberty and during pregnancy/lactation (Watson and Khaled, 2008; Lloyd-Lewis et al.,
2017). The formation of the milk lines occurs at approximately embryonic day (E) 10 in mice
and within 36 h resolves into five pairs of disk-shaped thickenings known as mammary placodes
(Cowin and Wysolmerski, 2010). At around E12.5, mammary placodes invaginate into the dermal
mesenchyme forming the mammary buds, which later elongate and invade the fat pad precursor,
creating a rudimentary epithelial tree (Cowin and Wysolmerski, 2010; Paine and Lewis, 2017; Lilja
et al., 2018). During embryonic development, multipotent mammary stem cells are replaced by
unipotent luminal and basal stem/progenitor cells (Lilja et al., 2018; Wuidart et al., 2018), with
epithelial cell identities being resolved by E15.5 (Lilja et al., 2018).
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Initial postnatal growth of the mammary epithelium is
proportional to body size and it is not until puberty that ductal
elongation occurs, fueled by proliferation of adult mammary
stem/progenitor cells within terminal end bud (TEB) structures
(Davis et al., 2016; Lloyd-Lewis et al., 2017, 2018; Paine and Lewis,
2017). Further epithelial expansion occurs during pregnancy
to generate the functional (milk-producing) alveolar epithelium
(Watson and Khaled, 2008; Davis et al., 2016). With the
cessation of infant suckling, alveolar mammary epithelial cells
undergo massive programed cell death (a process known as
post-lactational involution), returning the mammary gland to
a near pre-pregnant state that is capable of supporting future
pregnancies (Sargeant et al., 2014; Lloyd-Lewis et al., 2017).

Mφs are present in all adult tissues (Hume D. et al., 2019).
These cells are first and foremost professional phagocytes, but
also regulate tissue development, function and dysfunction
(Hume, 2015; Naik et al., 2018; Yang et al., 2018). In the normal
postnatal mammary gland, Mφs regulate ductal morphogenesis
during puberty (Gouon-Evans et al., 2000; Van Nguyen and
Pollard, 2002; Ingman et al., 2006), alveolar budding during
ovarian cycling (Chua et al., 2010), alveologenesis in pregnancy
(Pollard and Hennighausen, 1994) and tissue remodeling during
post-lactational involution (O’Brien et al., 2010, 2012; Hughes
et al., 2012), with many of these processes being impaired
in mice deficient in tissue Mφs. Moreover, Mφs identified by
fluorescence-activated cell sorting (FACS) of disaggregated tissue
were detected within the embryonic mammary gland by E16.5
and fetal-derived Mφs were apparently retained and expanded by
self-renewal in adult mammary tissue (Jäppinen et al., 2019).

With accumulating evidence demonstrating the dependence
of the mammary epithelium on Mφs at all developmental stages,
it is tempting to speculate that tissue-resident Mφs institute or
influence a putative mammary stem cell niche, as has been shown
for hematopoietic stem cells (Winkler et al., 2010), intestinal stem
cells (Sehgal et al., 2018) and hair follicle stem cells (Castellana
et al., 2014; Naik et al., 2018). Indeed, the activity of mammary
“stem” or repopulating cells (defined as a subset of basal cells
that are capable of recreating the bi-layered mammary epithelium
upon limiting dilution transplantation) is reduced when cells
are transplanted into the cleared fat pads of Mφ-depleted
recipient mice (Gyorki et al., 2009). More recently, mammary
repopulating cells were shown to express a Notch ligand Delta like
1 (DLL1) and Dll1-conditional knockout mice showed reduced
mammary repopulating activity and lower levels of F4/80+ Mφs
(Chakrabarti et al., 2018). Thus, it has been suggested that
DLL1-expressing basal cells activate Notch-expressing Mφs in a
reciprocal stem cell-macrophage niche (Chakrabarti et al., 2018;
Kannan and Eaves, 2018). Studies revealing developmental stage-
dependent distribution of Mφs in the mammary gland, including
their sites of confluence, would provide further evidence for the
existence of a stem cell-macrophage niche in this organ and may
help to reveal the specific and stage-dependent localization of
mammary stem/progenitor cells within the dynamic, bilayered
epithelium under physiological conditions. Here, we utilize a
fluorescent reporter model and optical tissue clearing techniques
to reveal the presence, prevalence and position of Mφs in the
mammary gland at all phases of development.

MATERIALS AND METHODS

Reagents
Neutral buffered formalin (NBF), Quadrol R©, triethanolamine and
4′,6-diamidino-2-phenylindole (DAPI) dilactate were purchased
from Sigma Aldrich. Normal goat serum was purchased from
ThermoFisher. Urea and sucrose were purchased from Chem-
Supply. Triton-X-100 was purchased from VWR International.
The following primary antibodies were used for immunostaining:
chicken anti-GFP (Abcam, ab13970, batch #s GR3190550-3
and -12), rat anti-F4/80 (Novus, NB600-404), rat anti-keratin
8 (DSHB, TROMA-I, batch #s 7/7/16 and 30/3/17), rabbit
anti-keratin 5 (BioLegend, 905504, batch # B230397) and
rabbit anti-SMA (Abcam, ab5694, batch # GR3183259-26). The
following secondary antibodies were used: goat anti-chicken
Alexa Fluor-488 (ThermoFisher, A21236), goat anti-rat Cy3
(ThermoFisher, A10522) and goat anti-rabbit Alexa Fluor-647
(ThermoFisher, A21245).

Animal Models
Animal experimentation was carried out in accordance with the
Australian Code for the Care and Use of Animals for Scientific
Purposes and the Queensland Animal Care and Protection Act
(2001), with local animal ethics committee approval. Animals
were housed in individually ventilated cages with a 12 h light/dark
cycle. Food and water were available ad libitum. Csf1r-EGFP
(MacGreen) (Sasmono et al., 2003) mice were a kind gift
from A/Prof Allison Pettit (Mater Research Institute-UQ). Mice
were maintained as hemizygotes on a C57BL6/J background.
C57BL6/J mice were obtained from the Animal Resources Center
(Western Australia).

To obtain mammary tissue during gestation, female mice
were mated and tissue harvested 14.5 days-post-coitus (mean
no. embryos: 7; range: 6–9). GFP+ embryos (E14.5) were also
harvested and analyzed after PCR-sexing. To obtain tissue during
lactation, female mice were mated, allowed to litter naturally
and lactating mammary tissue harvested on day 10 of lactation.
For studies during involution, females were allowed to nurse
for 10 days and mammary glands harvested 96 h post forced
involution. Litter sizes were not standardized (mean litter size:
7; range: 5–10). Mammary glands from pre-pubertal female
GFP+ mice (postnatal day 10), pubertal (6.5 weeks) and post-
pubertal (12 weeks) were also harvested and analyzed. No
estrus staging was performed in these studies. In all mice
the 2nd, 3rd, 4th, and 5th mammary glands were excised
and fixed as described above; 2nd/3rd and 5th mammary
glands were preferentially selected for 3D imaging, owing to
their smaller size.

CUBIC-Based Tissue Clearing and IHC
Tissue clearing was performed as previously optimized and
described (Davis et al., 2016; Lloyd-Lewis et al., 2016). Briefly,
mammary tissue was spread on foam biopsy pads and fixed for
6–9 h in NBF (10%). Embryos were fixed whole. For CUBIC-
based clearing, tissue was immersed in Reagent 1A (Susaki
et al., 2014; Lloyd-Lewis et al., 2016) at 37◦C for 3 days before
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washing and blocking in goat serum (10%) in PBS with Triton-
X-100 (0.5%) overnight at 4◦C. Tissue was incubated in primary
antibody in blocking buffer for 4 days and secondary antibody
in blocking buffer for 2 days at 4◦C. DAPI (5 µg/mL) treatment
was performed for 2–3 h at room temperature [omitted for
second harmonic generation (SHG)] and tissue was immersed in
modified Reagent 2 (Lloyd-Lewis et al., 2016) at 37◦C for at least
24 h prior to imaging.

Immunohistochemistry (FFPE Slides)
IHC on FFPE slides was performed as previously described
in detail (Stewart et al., 2019). Wholemount immunostaining
using anti-GFP antibody was performed prior to processing for
paraffin embedding.

Microscopy
Immunostained tissue sections were imaged using an Olympus
BX63 upright epifluorescence microscope using UPlanSAPO
10 × /0.4, 20 × /0.75, 40 × /0.95, 60 × /1.35, and 100 × /1.35
objective lenses. Immunostained optically cleared tissue was
imaged using an Olympus FV3000 laser scanning confocal
microscope with UPLSAPO 10 × /0.40, UPLSAPO 20 × /0.75,
UPLSAPO 30 × /1.05, and UPLFLN 40 × /0.75 objective lenses.
3D de-noising was performed as previously described (Boulanger
et al., 2010). For SHG, images were acquired using a Mai Tai
DeepSee multiphoton laser on a Zeiss 710 laser scanning inverted
microscope. Visualization and image processing was performed
in ImageJ (v1.52e, National Institutes of Health) (Linkert et al.,
2010; Schindelin et al., 2012).

RESULTS

Mφs Are Present in the Embryonic Bud
and Early Postnatal Gland With Sexually
Dimorphic Distribution
Mφs have never been visualized in the embryonic mammary
gland. A recent study by Jäppinen et al. revealed the
presence of F4/80+ cells in digested mammary tissue by
E16.5 by flow cytometry (Jäppinen et al., 2019). However,
in the absence of in situ imaging, it is currently unclear
whether these embryonic Mφs physically associate with the
developing mammary epithelium, as has been observed in the
postnatal gland.

To assess Mφ distribution in 3-dimensions in intact mammary
tissue, we used a Csf1r-EGFP mouse model (Sasmono et al.,
2003), combined with methods for optical tissue clearing and
deep tissue imaging (Supplementary Figure S1) (Davis et al.,
2016; Lloyd-Lewis et al., 2016, 2018). In this model, green
fluorescent protein (GFP) expression in tissues is restricted to
monocytes and Mφs in the developing embryo, starting with
yolk sac-derived phagocytes, and in all adult tissues (Sasmono
et al., 2003; Hume D. A. et al., 2019). Much lower expression
in granulocytes and some B lymphocytes is detectable by FACS,
but not in tissues. Multi-color fluorescence immunostaining of
tissue sections from mouse spleen confirmed that the majority

of GFP+ cells were also positive for the Mφ cell surface
marker, F4/80 (Supplementary Figure S2). Previous studies
using digested mammary tissue from Csf1r-EGFP mice analyzed
by flow cytometry have shown that >90% of GFP+ cells
in the mammary gland react with F4/80 (Chua et al., 2010;
Hodson et al., 2013).

In 3D image stacks of female Csf1r-EGFP embryos, Mφs were
detected in the mammary and dermal mesenchyme surrounding
the mammary epithelial bud as early as E14.5 (Figure 1A
and Supplementary Figure S3A). As expected (Sasmono et al.,
2003), Mφs were also present in the embryonic liver at this
stage (Figure 1B), and it has been suggested that these fetal
liver-derived Mφs contribute extensively to the pool of tissue
Mφs present in the adult gland (Jäppinen et al., 2019). Our
data show that Mφs were positioned adjacent to the embryonic
mammary epithelium around the time of lineage segregation
(Lilja et al., 2018; Wuidart et al., 2018). Interestingly, although
Mφs were positioned around the embryonic bud, they were rarely
observed to directly interact with the developing epithelium of
female embryos (Figure 1A and Supplementary Figure S3A). In
contrast, Mφs directly contacted and invaded the mammary bud
of male mice at E14.5, the developmental period when the male
bud is severed from the overlying epidermis in mice and begins to
regress (Figures 1C,D and Supplementary Figure S3B) (Dunbar
et al., 1999; Heuberger et al., 2006; Cowin and Wysolmerski,
2010). Mammary Mφs were also observed in the early postnatal
period in female mice (Figures 1E,F). By this stage, however, Mφs
were positioned around and inside of this rudimentary structure,
apparently interacting with the epithelium (Figure 1E).

Mφs Envelope and Infiltrate the
Elongating Terminal End Bud During
Ductal Morphogenesis
Mφs are essential for normal ductal morphogenesis during
puberty (Gouon-Evans et al., 2000; Van Nguyen and Pollard,
2002; Ingman et al., 2006). Pre-pubertal leukocyte depletion
using sub-lethal γ-irradiation is associated with impaired ductal
development and in Mφ-deficient Csf1op/Csf1op mice, misshapen
TEBs fail to properly invade the mammary fat pad at the rate
observed in age-matched controls (Gouon-Evans et al., 2000; Van
Nguyen and Pollard, 2002; Ingman et al., 2006). Previous studies
analyzing Mφ density and distribution in mouse mammary tissue
sections have shown recruitment of F4/80+ Mφs to the pubertal
epithelium and their convergence around the neck of TEBs
(Gouon-Evans et al., 2000; Schwertfeger et al., 2006), where adult
mammary stem/progenitor cells are thought to reside (Sreekumar
et al., 2015; Lloyd-Lewis et al., 2017).

3D imaging of mammary tissue from pubertal Csf1r-
EGFP mice revealed that mammary TEBs were enveloped
by Mφs, with spatial clustering observed (Figure 2A and
Supplementary Figure S4A). Previous studies using the F4/80
marker indicated that Mφs were mainly distributed at the neck
of TEBs, whereas eosinophils (distinguished by their eosinic
cytoplasm and bi-lobed nuclei) were concentrated at the TEB
head (Gouon-Evans et al., 2000, 2002). By contrast, in this
study GFP+ Mφs in both locations shared stellate morphology
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FIGURE 1 | Mφs in the embryonic and early postnatal mouse mammary gland. Maximum intensity z-projection and single optical (z) slices of cleared tissue from
(A,B) embryonic (E14.5) female mice and (C) embryonic (E14.5) male mice. (D) The distance of Mφs (within a 100 µm radius) of the female and male embryonic
buds. Mφs contacting the bud or inside of the bud were assigned a value of 0; this was only observed in male embryos. (E) Mammary tissue from postnatal day
(PND) 10 Csf1r-EGFP female mice. (F) Inguinal lymph node from PND10 mice showing subcapsular sinus Mφs. Keratin (K) 8 immunostaining shows K8-positive
luminal cells; K5 immunostaining reveals K5-expressing basal cells; smooth muscle actin (SMA) immunostaining reveals basal cells and SMA-positive vessels. White
arrowhead in (A) points to a Mφ that appears to be in contact with the embryonic bud in the maximum intensity projection, but is revealed to be positioned in the
mammary mesenchyme above the bud in optical slices. Yellow arrowheads in (C) point to Mφs that are in direct contact with the embryonic bud. Arrows in (E) point
to Mφs that are in contact with the PND10 mammary epithelium. Images are representative of 3 mice/embryos at each developmental stage.

(Figure 2A and Supplementary Figure S4A) and neither
showed any evidence of segmented nuclei (Supplementary
Figure S4A). A small number of mammary Mφs were observed
inside the body of TEBs (Figure 2A), where they may
contribute to clearance of apoptotic cells from the TEB lumen

(Humphreys et al., 1996; Gouon-Evans et al., 2000; Paine and
Lewis, 2017). GFP+ Mφs were found along the length of
the ductal epithelium in the pubertal gland (Figure 2B and
Supplementary Figure S4B) and in some cases appeared
to be positioned between the luminal and basal cell layers
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FIGURE 2 | Mφs in the mammary glands of pubertal virgin mice. Maximum intensity z-projection and single optical (z) slices of cleared mammary tissue from
pubertal (6–7 week old) Csf1r-EGFP mice. K8 immunostaining reveals the luminal cell layer; SMA marks the basal cell layer and SMA-positive vessels. (A) terminal
end buds (TEBs), (B) ductal regions, (C) inguinal lymph node, and (D) nipple region. Arrows in (A) show Mφs that have invaded the TEB epithelium and lumen
(arrowhead). Arrow in (B) shows a Mφ positioned between the epithelial bilayer. T, ductal tips; Du, ducts; LN, lymph node. Images are representative of 3 mice.
(E) Second harmonic generation (SHG) showing fibrillar collagens around a TEB structure. Image stacks in middle panel are depth-coded (R-Y-G-C-B). Dashed
arrow shows direction of TEB growth. Arrowhead in (E) shows a Mφ interacting with collagen.
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FIGURE 3 | Mφs in the mammary glands of post-pubertal virgin mice. Maximum intensity z-projection and single optical (z) slices of cleared mammary tissue from
post-pubertal (12 week-old) Csf1r-EGFP mice. K8 immunostaining shows luminal cells; SMA immunostaining reveals basal cells and SMA-positive vessels.
(A) Mammary ducts and (B) side buds. Du, duct; B, side bud. Arrowheads show Mφs that are positioned within the epithelial bilayer. K8 immunostaining reveals the
luminal cell layer and SMA marks the basal cell layer. Images are representative of 3 mice.

(Figure 2B, arrow). Intraepithelial Mφs, detected with F4/80,
are a feature of ductal epithelia throughout the body (Hume
D. A. et al., 1984). It is currently unclear how these interposed
Mφs affect luminal-basal cell connections [e.g., desmosomes
and gap junctions (Shamir and Ewald, 2015)] and their precise
function within the epithelial bilayer. GFP+ cells were also
dispersed throughout the mammary fat pad (Figure 2 and
Supplementary Figure S4; Schwertfeger et al., 2006; Chua
et al., 2010) and were densely packed in the inguinal lymph
node (Figure 2C and Supplementary Figure S4B) and nipple
region (Figure 2D).

Mammary Mφs have been shown to organize collagen into
fibrillar bundles to steer TEB growth through the stromal
fat pad (Ingman et al., 2006). We therefore examined
fibrillar collagens with SHG (Williams et al., 2005) in tissue
from Csf1r-EGFP mice at depth using an immersion-based
optical clearing approach, which preserves endogenous
fluorescence and tissue architecture (Lloyd-Lewis et al.,
2016; Vigouroux et al., 2017). Although surface collagen fibers
in the mammary gland were dense and multi-directional
[Figure 2E (red)], deeper collagen fibers proximal to the
growing TEB were aligned along its perimeter, extended
in the direction of TEB growth and were associated with
Mφs (Figure 2E). These data provide further evidence
that mechanical forces from the stroma guide epithelial
development in the normal mammary gland (Ingman et al., 2006;
Stewart et al., 2019).

Mφs Are Intimately Associated With the
Mature Ductal Epithelium
Mφs are present in the post-pubertal mouse mammary gland
at all phases of the estrus cycle, with the numbers being
highest in diestrus (Chua et al., 2010). In tissue sections at
all estrus stages, F4/80+ cells are detectable around alveolar

side buds versus ducts, where they are thought to promote
the development and regression of these transient structures
(Chua et al., 2010). Using 3D imaging of mammary tissue from
Csf1r-EGFP mice, we observed similar numbers of Mφs closely
associated with mammary ducts (Figure 3A and Supplementary
Figure S5) and side buds (Figure 3B and Supplementary
Figure S5A). As in the pubertal epithelium, Mφs were also
positioned between the luminal and basal cell layers in mature
ducts and buds (Figures 3A,B and Supplementary Figure S5B,
arrowheads) with some evidence of periodicity in intraepithelial
Mφ placement (Supplementary Figure S5B). This is consistent
with regular distributions of Mφs in many locations throughout
the body (Hume D. et al., 2019). SHG of mature ducts revealed
some fibrillar collagens that were located around the ducts and
vessels (Supplementary Figure S5C).

Mφs Surround Alveolar Units in
Gestation and Lactation
Mφ deficient Csf1op/Csf1op female mice have compromised
fertility (Pollard et al., 1991). Amongst those that do generate
offspring, none are able to nurture a full litter, despite normal
maternal behaviors (Pollard and Hennighausen, 1994). In-
depth analyses of mammary tissue from pregnant and lactating
Csf1op/Csf1op mice showed incomplete branching and precocious
alveolar development (Pollard and Hennighausen, 1994) and
F4/80+ cells have been detected around the developing and
functional alveolar units during pregnancy and late gestation
(Gouon-Evans et al., 2002).

3D analysis of mammary tissue from pregnant Csf1r-EGFP
mice (day 14.5 gestation, dG) confirmed Mφ localization
around the expanding alveolar structures (Figure 4A and
Supplementary Figure S6). By lactation, Mφs were observed
immediately adjacent to alveolar basal cells, where they
frequently imitated basal cell morphology (Figures 4B,C, white
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FIGURE 4 | Mφs in the mammary glands of pregnant and lactating mice. Maximum intensity z-projection and single optical (z) slices of cleared mammary tissue from
(A) pregnant (14.5 days gestation, dG) and (B,C) lactating (day 10 lactation, d10) Csf1r-EGFP mice. K8 immunostaining reveals K8-positive luminal cells; smooth
muscle actin (SMA) marks the basal/myoepithelial cells and SMA-positive vessels. Arrowheads in (A) show Mφs that are interacting with the developing alveolar
epithelium. In (B,C), white arrowheads show Mφs that are aligned along basal cells (versus white arrows showing Mφs that are not imitating basal cell morphology).
Yellow arrowheads in (C) show Mφs that are positioned between the ductal epithelial bilayer. Images are representative of 3 mice at each developmental stage.

arrowheads). Mφs were also present within lactational alveoli
(Figure 4C, arrow), consistent with their enrichment in breast
milk (Field, 2005).

The Irreversible Phase of Involution Is
Associated With an Increase in Mφ

Number in and Around Regressing
Alveolar Structures
The number of Mφs surrounding the mammary epithelium
increases drastically from days 3–4 of involution

(Lund et al., 1996; Stein et al., 2004; Hughes et al., 2012),
and involution-associated Mφs appear polarized toward tissue
repair (O’Brien et al., 2010). The recruitment and polarization of
Mφs in the involuting mammary gland is regulated by epithelial
Stat3 expression (Hughes et al., 2012). Moreover, pre-weaning
depletion of CSF1R-expressing cells reduces mammary epithelial
cell death during post-lactational involution, an effect that can be
reversed by orthotopic transplantation of bone marrow-derived
Mφs (O’Brien et al., 2012).

To further examine Mφ number, morphology and distribution
in the regressing mammary gland in 3-dimensions, we analyzed
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FIGURE 5 | Mφs in the mammary glands of mice during post-lactational involution. (A–C) Maximum intensity z-projection and single optical (z) slices of cleared
mammary tissue from Csf1r-EGFP mice during involution (96 h post forced weaning). K8 immunostaining shows luminal cells; SMA immunostaining reveals basal
cells and SMA-positive vessels. Arrowheads in (B) show a cluster of GFP+ Mφs inside of collapsed alveolar units. (C) SHG showing fibrillar collagens surrounding
regressing alveoli. Images are representative of 3 mice.

FIGURE 6 | Diagram summarizing Mφ distribution in the mouse mammary gland during distinct phases of development and remodeling.

optically clear tissue from Csf1r-EGFP mice during the
irreversible phase of involution. Relative to other developmental
stages, Mφ density was high at 96 h involution and Mφs
were observed around and inside ducts and regressing alveoli
(Figures 5A,B). Large aggregates of GFP+ cells, reminiscent of
homotypic fusion (MacLauchlan et al., 2009), were also observed
inside degenerating alveolar structures (Figure 5B arrowheads).
Similar aggregates of GFP+ Mφs have been observed in a
model of epithelial regeneration in the kidney following transient
ischemia (Joo et al., 2016).

Collagen density increases during mammary gland involution
and partially degraded non-fibrillar collagens have been
suggested to be chemotactic for Mφs (O’Brien et al., 2010). Intra-

and interlobular fibrillar collagens were observed with SHG in
Csf1r-EGFP mice and GFP+ Mφs were observed to be associated
with collagen fibrils (Figure 5C).

DISCUSSION

Mφs contribute to mammary gland development and remodeling
at all developmental stages (Pollard and Hennighausen, 1994;
Gouon-Evans et al., 2000; Dai et al., 2002; Van Nguyen and
Pollard, 2002; Ingman et al., 2006; Chua et al., 2010; O’Brien et al.,
2010, 2012; Hughes et al., 2012). The exact mechanisms by which
tissue Mφs regulate these processes are still being elucidated
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(Schwertfeger et al., 2006) and may be linked to their phagocytic,
trophic and/or matrix remodeling functions (Sternlicht, 2006;
Pollard, 2009). A comprehensive characterization of the stage-
specific physiological roles of Mφs in the mammary gland
depends upon knowledge of their precise anatomical location
within this organ. In this study, we provide new insights
into the allocation, morphology and distribution of Mφs in
the embryonic, pre-pubertal, pubertal, post-pubertal, pregnant,
lactating and involuting mammary glands of fluorescent
reporter-positive mice in situ in 3-dimensions (Figure 6).
Our study yields a number of important observations that
could only be revealed by multi-dimensional imaging using a
tamoxifen-independent, cell type-specific fluorescent reporter
model (Hume D. et al., 2019; Hume D. A. et al., 2019). Firstly,
in contrast to previous reports (Gouon-Evans et al., 2000, 2002),
we demonstrate that Mφs are not concentrated at the TEB
neck, although some polarity in their distribution around TEBs
was observed. These findings suggest that Mφs may regulate
mammary epithelial cells both within the head and neck of the
TEB structure (Paine et al., 2016). Studies performing intravital
imaging of TEB dynamics in Csf1r-EGFP mice are an aim for the
future and may help to reveal possible correlations between Mφ

density and TEB behavior (e.g., turning and bifurcation events).
Mammary Mφs were also frequently embedded between

luminal and basal cells of the ductal epithelium. This has
previously been observed in mammalian ductal epithelia,
including the bile duct, salivary gland, tracheobronchial gland
and mammary gland using thin sections prepared from formalin-
fixed paraffin-embedded or frozen tissue (Hume D. A. et al.,
1984; Sun et al., 2013). Regularity in the spacing of these
intraepithelial Mφs was also noted, which may arise through
mutual repulsion (Hume D. et al., 2019) and could potentially
contribute to regular distribution of adjacent populations of
heterogeneous luminal and basal cells (Ismail et al., 2002; Davis
et al., 2016). In sum, the work presented here suggests a
close functional relationship between Mφs and ductal epithelial
cells, and possible communication between morphologically
related Mφ populations. Further studies are needed to determine
whether these intraepithelial Mφs share similar gene and protein
expression patterns and whether this information can be used
to probe their function, retention and passage within the
epithelium. Tissue Mφs have been shown to be influenced
by properties of their specific niche within each tissue (e.g.,
anchoring scaffolds and local cues) (Chakarov et al., 2019;
Mondor et al., 2019). Single cell sequencing of isolated mammary
Mφs from Csf1r-EGFP mice at distinct developmental stages, as
exemplified by recent studies of other tissues (Chakarov et al.,
2019; Mondor et al., 2019), might help to reveal the extent of
functional diversity within Mφ populations in this organ.

We reveal that Mφs alter their morphology at distinct
developmental stages, including the transition from gestation
to lactation. The localization of Mφs around growing alveolar
units during gestation and the observation that Mφ-deficient
Csf1op/Csf1op mice exhibit precocious alveolar development,
suggests that during this phase, alveolar-associated Mφs may
restrain alveologenesis. By analogy, Mφs in the diaphragm appear
to constrain the growth of lymphatic vessels and Csf1r mutation

promoted branch formation of lymphatic sprouts (Ochsenbein
et al., 2016). During lactation, Mφs altered their anatomical
position and were observed to closely imitate the morphology
of adjacent, differentiated alveolar basal cells. Whether these
cells specifically align themselves with oxytocin-responsive basal
cells during lactation to modify basal cell function (Davis et al.,
2015; Stevenson et al., 2019) or more simply to occupy the
physical space that these force-exerting cells create within the
alveolar epithelium (Davis, 2016; Stewart et al., 2019), remains
to be seen. Such a function might be analogous to the role of
a distinct population of CSF1-dependent Mφs in the regulation
of peristalsis in the muscularis externa of the intestine (Muller
et al., 2014). Interestingly, in this study muscularis Mφs and
intestinal motility could be reversibly modified by lumen factors
(Muller et al., 2014). Whether mammary Mφs, positioned
alongside alveolar basal cells, are capable of sampling the alveolar
lumen environment to constrain basal cell-mediated alveolar
contractility (e.g., in mastitis) has not yet been determined.
Another possibility is that basal cell contractility may instead alter
the function of alveolar Mφs. Such an effect has been observed
in the lung, another organ that is subject to cyclical mechanical
stimulation, although this phenomenon was restricted to newly
recruited monocytes and not the population of resident alveolar
Mφs (Solis et al., 2019). Finally, we were able to visualize
for the first time tissue-resident Mφs in the mesenchyme
surrounding the mammary epithelial bud in 14.5 day-old female
embryos. Intriguingly, these embryonic Mφs rarely contacted the
epithelial cells of the developing mammary bud at this stage
of embryogenesis. This is in striking contrast to epithelial-Mφ

interactions in the early postnatal period, where Mφs surround
and invade the rudimentary ductal epithelium. This also contrasts
with the male embryo, where Mφs were often observed to both
contact and infiltrate the epithelial bud at the time when its
connection to the overlying epidermis is severed and the structure
begins to regress (Dunbar et al., 1999; Heuberger et al., 2006;
Cowin and Wysolmerski, 2010). At this stage, Mφs may have an
important role in clearing apoptotic epithelial and mesenchymal
cells (Dunbar et al., 1999; Henson and Hume, 2006).

Mammary stem/progenitor cells are located within the
mammary bud (in the embryo) and TEBs (in puberty). After
ductal elongation is complete and TEBs regress, however, the
location of long-lived mammary stem/progenitor cells and their
putative niche remains unknown, although it has been suggested
that these cells are deposited along the ductal epithelium by
elongating TEBs (Davis et al., 2016; Lloyd-Lewis et al., 2017). In
the 14.5 day embryo, Mφs were positioned uniformly around,
but not in contact with, the mammary bud. These data suggest
that if a mammary stem cell-macrophage niche exists in the
embryo around the time of lineage segregation, it operates over
the scale of tens of micrometers and is fairly homogeneous.
Mφs were also positioned around pubertal TEBs, however, in
contrast to the embryo, these cells contacted and infiltrated
TEBs, were more densely arranged around these structures
and often showed spatial clustering. Future studies combining
tamoxifen-independent Dll1-mCherry (Chakrabarti et al., 2018)
and Csf1r-EGFP mouse models with optical tissue clearing and
3D imaging may help to reveal the precise location of mammary
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stem/progenitor cells within TEBs and the post-pubertal ductal
epithelium. It should be noted, however, that whilst ductal
elongation is delayed in Csf1op/Csf1op mice, these structures
are still capable of invading the fat pad and by 12 weeks
of age have reached the fat pad limits (Gouon-Evans et al.,
2000). These findings imply that mammary epithelial cells have
mechanisms to overcome insufficiencies in niche signaling. One
candidate is the alternative CSF1R ligand, IL34, which may
also be expressed by mammary epithelial cells (DeNardo et al.,
2011). Studies investigating the activation and roles of the
CSF1R in mammary development have been thwarted by the
severe postnatal phenotype of Csf1r−/Csf1r− mice (Chitu and
Stanley, 2017), but may be more amenable to study in recently
described Csf1r−/Csf1r− rats (Pridans et al., 2019). Alternatively,
these findings may reflect a long-term plasticity in mammary
epithelial cells (Lilja et al., 2018) and a shifting definition of
“stemness” in some tissues away from a unidirectional, top-
down model to a model where stemness is considered as a
cell state that may be acquired or extinguished under specific
microenvironmental conditions (Laplane and Solary, 2019).
A closer examination of mammary cell behaviors—including
lineage segregation—under conditions of Mφ depletion may
provide important insights into epithelial plasticity in this vital
mammalian organ.
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