388 research outputs found

    Parity-dependent State Engineering and Tomography in the ultrastrong coupling regime

    Get PDF
    Reaching the strong coupling regime of light-matter interaction has led to an impressive development in fundamental quantum physics and applications to quantum information processing. Latests advances in different quantum technologies, like superconducting circuits or semiconductor quantum wells, show that the ultrastrong coupling regime (USC) can also be achieved, where novel physical phenomena and potential computational benefits have been predicted. Nevertheless, the lack of effective decoupling mechanism in this regime has so far hindered control and measurement processes. Here, we propose a method based on parity symmetry conservation that allows for the generation and reconstruction of arbitrary states in the ultrastrong coupling regime of light-matter interactions. Our protocol requires minimal external resources by making use of the coupling between the USC system and an ancillary two-level quantum system.Comment: Improved version. 9 pages, 5 figure

    Dynamical Casimir effect entangles artificial atoms

    Get PDF
    We show that the physics underlying the dynamical Casimir effect may generate multipartite quantum correlations. To achieve it, we propose a circuit quantum electrodynamics (cQED) scenario involving superconducting quantum interference devices (SQUIDs), cavities, and superconducting qubits, also called artificial atoms. Our results predict the generation of highly entangled states for two and three superconducting qubits in different geometric configurations with realistic parameters. This proposal paves the way for a scalable method of multipartite entanglement generation in cavity networks through dynamical Casimir physics.Comment: Improved version and references added. Accepted for publication in Physical Review Letter

    Organizational and Technological Aspects of a Platform for Collective Food Awareness

    Get PDF
    Can Internet-of-food technologies foster collective food awareness within a food consumer community? The paper contributes to answer this question in a fourfold aspect. Firstly, we model a cooperative process for generating and sharing reliable food information that is derived from food instrumental measurements performed by consumers via smart food things. Secondly, we outline the functional architecture of a platform capable to support such a process and to let a consumer community share reliable food information. Thirdly, we identify main entities and their attributes necessary to model the contextualized interaction between a consumer and the platform. Lastly, we review articles reviewing technologies capable of acquiring and quantifying food characteristics for food performances assessment. The purpose is to give an insight into current research directions on technologies employable in a platform for collective food awareness

    DEEP CONVOLUTIONAL NEURAL NETWORKS FOR SENTIMENT ANALYSIS OF CULTURAL HERITAGE

    Get PDF
    Abstract. The promotion of Cultural Heritage (CH) goods has become a major challenges over the last years. CH goods promote economic development, notably through cultural and creative industries and tourism. Thus, an effective planning of archaeological, cultural, artistic and architectural sites within the territory make CH goods easily accessible. A way of adding value to these services is making them capable of providing, using new technologies, a more immersive and stimulating fruition of information. In this light, an effective contribution can be provided by sentiment analysis. The sentiment related to a monument can be used for its evaluation considering that if it is positive, it influences its public image by increasing its value. This work introduces an approach to estimate the sentiment of Social Media pictures CH related. The sentiment of a picture is identified by an especially trained Deep Convolutional Neural Network (DCNN); aftewards, we compared the performance of three DCNNs: VGG16, ResNet and InceptionResNet. It is interesting to observe how these three different architectures are able to correctly evaluate the sentiment of an image referred to a ancient monument, historical buildings, archaeological sites, museum objects, and more. Our approach has been applied to a newly collected dataset of pictures from Instagram, which shows CH goods included in the UNESCO list of World Heritage properties.</p
    corecore