344 research outputs found

    Long-range order in the A-like phase of superfluid 3He in aerogel

    Full text link
    A mutual action of the random anisotropy brought in the superfluid 3He by aerogel and of the global anisotropy caused by its deformation is considered. Strong global anisotropy tends to suppress fluctuations of orientation of the order parameter and stabilizes ABM order parameter. In a limit of vanishing anisotropy these fluctuations are getting critical. It is argued that still in a region of small fluctuations the average order parameter can acquire "robust" component. This component maintains a long-range order even in a limit of vanishing global anisotropy.Comment: A contribution to QFS 2007 in Kazan, revised for publication in the Proceeding

    No quasi-long-range order in strongly disordered vortex glasses: a rigorous proof

    Full text link
    The paper contains a rigorous proof of the absence of quasi-long-range order in the random-field O(N) model for strong disorder in the space of an arbitrary dimensionality. This result implies that quasi-long-range order inherent to the Bragg glass phase of the vortex system in disordered superconductors is absent as the disorder or external magnetic field is strong.Comment: 3 pages, Revte

    Critical Hysteresis from Random Anisotropy

    Get PDF
    Critical hysteresis in ferromagnets is investigated through a NN-component spin model with random anisotropies, more prevalent experimentally than the random fields used in most theoretical studies. Metastability, and the tensorial nature of anisotropy, dictate its physics. Generically, random field Ising criticality occurs, but other universality classes exist. In particular, proximity to O(N)\mathcal{O}(N) criticality may explain the discrepancy between experiment and earlier theories. The uniaxial anisotropy constant, which can be controlled in magnetostrictive materials by an applied stress, emerges as a natural tuning parameter.Comment: four pages, revtex4; minor corrections in the text and typos corrected (published version

    Surveillance of resistance in bacteria causing community‐acquired respiratory tract infections

    Get PDF
    Bacterial resistance to antibiotics in community‐acquired respiratory tract infections is a serious problem and is increasing in prevalence world‐wide at an alarming rate. Streptococcus pneumoniae, one of the main organisms implicated in respiratory tract infections, has developed multiple resistance mechanisms to combat the effects of most commonly used classes of antibiotics, particularly the β‐lactams (penicillin, aminopenicillins and cephalosporins) and macrolides. Furthermore, multidrug‐resistant strains of S. pneumoniae have spread to all regions of the world, often via resistant genetic clones. A similar spread of resistance has been reported for other major respiratory tract pathogens, including Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pyogenes. To develop and support resistance control strategies it is imperative to obtain accurate data on the prevalence, geographic distribution and antibiotic susceptibility of respiratory tract pathogens and how this relates to antibiotic prescribing patterns. In recent years, significant progress has been made in developing longitudinal national and international surveillance programs to monitor antibiotic resistance, such that the prevalence of resistance and underlying trends over time are now well documented for most parts of Europe, and many parts of Asia and the Americas. However, resistance surveillance data from parts of the developing world (regions of Central America, Africa, Asia and Central/Eastern Europe) remain poor. The quantity and quality of surveillance data is very heterogeneous; thus there is a clear need to standardize or validate the data collection, analysis and interpretative criteria used across studies. If disseminated effectively these data can be used to guide empiric antibiotic therapy, and to support—and monitor the impact of—interventions on antibiotic resistance

    Analysis of the intraspinal calcium dynamics and its implications on the plasticity of spiking neurons

    Full text link
    The influx of calcium ions into the dendritic spines through the N-metyl-D-aspartate (NMDA) channels is believed to be the primary trigger for various forms of synaptic plasticity. In this paper, the authors calculate analytically the mean values of the calcium transients elicited by a spiking neuron undergoing a simple model of ionic currents and back-propagating action potentials. The relative variability of these transients, due to the stochastic nature of synaptic transmission, is further considered using a simple Markov model of NMDA receptos. One finds that both the mean value and the variability depend on the timing between pre- and postsynaptic action-potentials. These results could have implications on the expected form of synaptic-plasticity curve and can form a basis for a unified theory of spike time-dependent, and rate based plasticity.Comment: 14 pages, 10 figures. A few changes in section IV and addition of a new figur

    Hopping Conduction in Disordered Carbon Nanotubes

    Full text link
    We report electrical transport measurements on individual disordered carbon nanotubes, grown catalytically in a nanoporous anodic aluminum oxide template. In both as-grown and annealed types of nanotubes, the low-field conductance shows as exp[-(T_{0}/T)^{1/2}] dependence on temperature T, suggesting that hopping conduction is the dominant transport mechanism, albeit with different disorder-related coefficients T_{0}. The field dependence of low-temperature conductance behaves an exp[-(xi_{0}/xi)^{1/2}] with high electric field xi at sufficiently low T. Finally, both annealed and unannealed nanotubes exhibit weak positive magnetoresistance at low T = 1.7 K. Comparison with theory indicates that our data are best explained by Coulomb-gap variable range hopping conduction and permits the extraction of disorder-dependent localization length and dielectric constant.Comment: 10 pages, 5 figure

    Quasi-long-range order in the random anisotropy Heisenberg model: functional renormalization group in 4-\epsilon dimensions

    Full text link
    The large distance behaviors of the random field and random anisotropy O(N) models are studied with the functional renormalization group in 4-\epsilon dimensions. The random anisotropy Heisenberg (N=3) model is found to have a phase with the infinite correlation radius at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law < m(x) m(y) >\sim |x-y|^{-0.62\epsilon}. The magnetic susceptibility diverges at low fields as \chi \sim H^{-1+0.15\epsilon}. In the random field O(N) model the correlation radius is found to be finite at the arbitrarily weak disorder for any N>3. The random field case is studied with a new simple method, based on a rigorous inequality. This approach allows one to avoid the integration of the functional renormalization group equations.Comment: 12 pages, RevTeX; a minor change in the list of reference

    Are there nu_mu or nu_tau in the flux of solar neutrinos on earth?

    Full text link
    Using the model independent method of Villante, Fiorentini, Lisi, Fogli, Palazzo, and the rates measured in the SNO and Super-Kamiokande solar neutrino experiment, we calculate the amount of active nu_mu or nu_tau present in the flux of solar neutrinos on Earth. We show that the probability of nu_e->nu_{mu,tau} transitions is larger than zero at 99.89% CL. We find that the averaged flux of nu_{mu,tau} on Earth is larger than 0.17 times the 8B nu_e flux predicted by the BP2000 Standard Solar Model at 99% CL. We discuss also the consequences of possible nu_e->anti-nu_{mu,tau} or nu_e->anti-nu_e transitions of solar neutrinos. We derive a model-independent lower limit of 0.52 at 99% CL for the ratio of the 8B nu_e flux produced in the Sun and its value in the BP2000 Standard Solar Model.Comment: 5 pages. Added discussion on possible nu_e->anti-nu_{mu,tau} or nu_e->anti-nu_e transition

    Symmetries and Elasticity of Nematic Gels

    Full text link
    A nematic liquid-crystal gel is a macroscopically homogeneous elastic medium with the rotational symmetry of a nematic liquid crystal. In this paper, we develop a general approach to the study of these gels that incorporates all underlying symmetries. After reviewing traditional elasticity and clarifying the role of broken rotational symmetries in both the reference space of points in the undistorted medium and the target space into which these points are mapped, we explore the unusual properties of nematic gels from a number of perspectives. We show how symmetries of nematic gels formed via spontaneous symmetry breaking from an isotropic gel enforce soft elastic response characterized by the vanishing of a shear modulus and the vanishing of stress up to a critical value of strain along certain directions. We also study the phase transition from isotropic to nematic gels. In addition to being fully consistent with approaches to nematic gels based on rubber elasticity, our description has the important advantages of being independent of a microscopic model, of emphasizing and clarifying the role of broken symmetries in determining elastic response, and of permitting easy incorporation of spatial variations, thermal fluctuations, and gel heterogeneity, thereby allowing a full statistical-mechanical treatment of these novel materials.Comment: 21 pages, 4 eps figure

    Energy Release During Slow Long Duration Flares Observed by RHESSI

    Get PDF
    Slow Long Duration Events (SLDEs) are flares characterized by long duration of rising phase. In many such cases impulsive phase is weak with lack of typical short-lasting pulses. Instead of that smooth, long-lasting Hard X-ray (HXR) emission is observed. We analysed hard X-ray emission and morphology of six selected SLDEs. In our analysis we utilized data from RHESSI and GOES satellites. Physical parameters of HXR sources were obtained from imaging spectroscopy and were used for the energy balance analysis. Characteristic time of heating rate decrease, after reaching its maximum value, is very long, which explains long rising phase of these flares.Comment: Accepted for publication in Solar Physic
    corecore