1,375 research outputs found
Extreme-Point-based Heuristics for the Three-Dimensional Bin Packing problem
One of the main issues in addressing three-dimensional packing problems is finding an efficient and accurate definition of the points at which to place the items inside the bins, because the performance of exact and heuristic solution methods is actually strongly influenced by the choice of a placement rule. We introduce the extreme point concept and present a new extreme point-based rule for packing items inside a three-dimensional container. The extreme point rule is independent from the particular packing problem addressed and can handle additional constraints, such as fixing the position of the items. The new extreme point rule is also used to derive new constructive heuristics for the three-dimensional bin-packing problem. Extensive computational results show the effectiveness of the new heuristics compared to state-of-the-art results. Moreover, the same heuristics, when applied to the two-dimensional bin-packing problem, outperform those specifically designed for the proble
Reallocation Problems in Scheduling
In traditional on-line problems, such as scheduling, requests arrive over
time, demanding available resources. As each request arrives, some resources
may have to be irrevocably committed to servicing that request. In many
situations, however, it may be possible or even necessary to reallocate
previously allocated resources in order to satisfy a new request. This
reallocation has a cost. This paper shows how to service the requests while
minimizing the reallocation cost. We focus on the classic problem of scheduling
jobs on a multiprocessor system. Each unit-size job has a time window in which
it can be executed. Jobs are dynamically added and removed from the system. We
provide an algorithm that maintains a valid schedule, as long as a sufficiently
feasible schedule exists. The algorithm reschedules only a total number of
O(min{log^* n, log^* Delta}) jobs for each job that is inserted or deleted from
the system, where n is the number of active jobs and Delta is the size of the
largest window.Comment: 9 oages, 1 table; extended abstract version to appear in SPAA 201
Endothelial nitric oxide synthase gene T-786C and 27-bp repeat gene polymorphisms in retinopathy of prematurity
PURPOSE: Retinopathy of prematurity (ROP), which is associated with abnormal retinal vessel development, is the leading cause of visual loss in preterm infants. Endothelial nitric oxide synthase (eNOS) is believed to play a central role in both retinal angiogenesis and vasculogenesis. The aim of this study was to investigate functional genetic polymorphisms of eNOS in the pathogenesis of ROP. METHODS: eNOS T(â786)C and 27-bp repeat (eNOS, b: wild-type, a: mutant) genotypes were determined using allele-specific polymerase chain reaction in 105 low birth weight (LBW) preterm infants treated for ROP (treated group). A control group was set up and composed of 127 LBW infants with stage 1 or 2 ROP that did not not require treatment (untreated group). RESULTS: The genotype distribution of eNOS 27-bp repeat polymorphism was found to significantly differ (p=0.015) between the two groups, whereas the genotype distribution of eNOS T(â786)C did not differ (p=0.984) between the groups. There was no difference in the distribution of either the âaâ allele (p=0.153) nor of the C allele (p=0.867) in a groups comparison. Multiple logistic regression analysis revealed that male gender (p=0.046) and eNOS aa genotype (p=0.047 versus ab genotype and p=0.022 versus bb genotype) were significantly associated severe ROP that required treatment. The haplotype estimations based on the detected genotype distributions showed that the prevalence of aT and bT haplotypes was significantly increased in the group treated for ROP. CONCLUSIONS: Functional eNOS 27-bp repeat polymorphism might be associated with the risk of severe ROP, however we found no association between the eNOS T(â786)C and the pathogenesis of ROP
Steppe woodlands with Tatarian Maple (Aceri tatarici-Quercetum pubescentis-roboris) on the great Hungarian plain and its neighbourhood. An unfinished synthesis with supplementary notes
This paper presents the so far only partially published research material of the late BĂĄlint ZĂłlyomi on one of his major fields of interest, the forest steppe vegetation. The phytosociological tables presented here were found in his bequest indicating that he was going to publish a grand synthesis on this topic, which, however, has not come true. Since no written text accompanied the original tables, a historical overview and a short explanation to the tables are also provided
Universal Computation with Arbitrary Polyomino Tiles in Non-Cooperative Self-Assembly
In this paper we explore the power of geometry to overcome the limitations of non-cooperative self-assembly. We define a generalization of the abstract Tile Assembly Model (aTAM), such that a tile system consists of a collection of polyomino tiles, the Polyomino Tile Assembly Model (polyTAM), and investigate the computational powers of polyTAM systems at temperature 1, where attachment among tiles occurs without glue cooperation (i.e., without the enforcement that more than one tile already existing in an assembly must contribute to the binding of a new tile). Systems composed of the unit-square tiles of the aTAM at temperature 1 are believed to be incapable of Turing universal computation (while cooperative systems, with temperature \u3e 1, are able). As our main result, we prove that for any polyomino P of size 3 or greater, there exists a temperature-1 polyTAM system containing only shape-P tiles that is computationally universal. Our proof leverages the geometric properties of these larger (relative to the aTAM) tiles and their abilities to effectively utilize geometric blocking of particular growth paths of assemblies, while allowing others to complete. In order to prove the computational powers of polyTAM systems, we also prove a number of geometric properties held by all polyominoes of size â„ 3.
To round out our main result, we provide strong evidence that size-1 (i.e. aTAM tiles) and size-2 polyomino systems are unlikely to be computationally universal by showing that such systems are incapable of geometric bitreading, which is a technique common to all currently known temperature-1 computationally universal systems. We further show that larger polyominoes with a limited number of binding positions are unlikely to be computationally universal, as they are only as powerful as temperature-1 aTAM systems. Finally, we connect our work with other work on domino self-assembly to show that temperature-1 assembly with at least 2 distinct shapes, regardless of the shapes or their sizes, allows for universal computation
Engineering Art Galleries
The Art Gallery Problem is one of the most well-known problems in
Computational Geometry, with a rich history in the study of algorithms,
complexity, and variants. Recently there has been a surge in experimental work
on the problem. In this survey, we describe this work, show the chronology of
developments, and compare current algorithms, including two unpublished
versions, in an exhaustive experiment. Furthermore, we show what core
algorithmic ingredients have led to recent successes
Realistic Earth escape strategies for solar sailing
With growing interest in solar sailing comes the requirement to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. Previously unexplained seasonal variations in sail escape times from Earth orbit are explained analytically and corroborated within a numerical trajectory model. Blended-sail control algorithms, explicitly independent of time, which providenear-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller, are then presented. These algorithms are investigated from a range of initial conditions and are shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the minimum sail characteristic acceleration required for escape from a polar orbit without traversing the Earth shadow cone increases exponentially as initial altitude is decreased
GCIP water and energy budget synthesis (WEBS)
As part of the World Climate Research Program\u27s (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996â1999 from the âbest availableâ observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or âcloseâ budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets
- âŠ