46 research outputs found

    A primary Rosai-Dorfman-Destombes disease of the scalp: case report and literature review

    Get PDF
    BackgroundRosai-Dorfman-Destombes disease (RDD) was first described in 1965 as a benign histiocytic proliferative disorder of unknown cause. Cases of RDD limited to cutaneous tissue have been reported over the past few decades, but single cutaneous RDD of the scalp is rare.Case presentationWe report a 31-year-old male with a lump on the parietal scalp without extranodal lesion lasting 1 month with gradual enlargement. The surgical incision ruptured with purulent after the first resection. Then the patient was treated with plastic surgery after disinfection and antibiotic treatment. Finally, he recovered well and discharged after 20 days.ConclusionsRDD of the scalp is rare. Surgical incision can cure the lesion but it may become infected because of increased lymphocytic infiltration. Early diagnosis and differential diagnosis of RDD are necessary. For treatment, individualized therapy is critical to patient prognosis

    Silicon-Encapsulated Hollow Carbon Nanofiber Networks as Binder-Free Anodes for Lithium Ion Battery

    Get PDF
    Silicon-encapsulated hollow carbon nanofiber networks with ample space around the Si nanoparticles (hollow Si/C composites) were successfully synthesized by dip-coating phenolic resin onto the surface of electrospun Si/PVA nanofibers along with the subsequent solidification and carbonization. More importantly, the structure and Si content of hollow Si/C composite nanofibers can be effectively tuned by merely varying the concentration of dip solution. As-synthesized hollow Si/C composites show excellent electrochemical performance when they are used as binder-free anodes for Li-ion batteries (LIBs). In particular, when the concentration of resol/ethanol solution is 3.0%, the product exhibits a large capacity of 841 mAh g−1 in the first cycle, prominent cycling stability, and good rate capability. The discharge capacity retention of it was ~90%, with 745 mAh g−1 after 50 cycles. The results demonstrate that the hollow Si/C composites are very promising as alternative anode candidates for high-performance LIBs

    Construction of EMT related prognostic signature for kidney renal clear cell carcinoma, through integrating bulk and single-cell gene expression profiles

    Get PDF
    Introduction: Kidney renal clear cell carcinoma (KIRC), as a main type of malignant kidney cancers, has a poor prognosis. Epithelial-mesenchymal transformation (EMT) exerts indispensable role in tumor progression and metastasis, including in KIRC. This study aimed to mine more EMT related details and build prognostic signature for KIRC.Methods: The KIRC scRNA-seq data and bulk data were downloaded from GEO and TCGA databases, respectively. The cell composition in KIRC was calculated using CIBERSORT. Univariate Cox regression analysis and LASSO Cox regression analysis were combined to determine the prognostic genes. Gene set variation analysis and cell-cell communication analysis were conducted to obtain more functional information. Additionally, functional analyses were conducted to determine the biological roles of si-LGALS1 in vitro.Results: We totally identified 2,249 significant differentially expressed genes (DEGs) in KIRC samples, meanwhile a significant distinct expression pattern was found in KIRC, involving Epithelial Mesenchymal Transition pathway. Among all cell types, significantly higher proportion of epithelial cells were observed in KIRC, and 289 DEGs were identified in epithelial cells. After cross analysis of all DEGs and 970 EMT related genes, SPARC, TMSB10, LGALS1, and VEGFA were optimal to build prognostic model. Our EMT related showed good predictive performance in KIRC. Remarkably, si-LGALS1 could inhibit migration and invasion ability of KIRC cells, which might be involved in suppressing EMT process.Conclusion: A novel powerful EMT related prognostic signature was built for KIRC patients, based on SPARC, TMSB10, LGALS1, and VEGFA. Of which, si-LGALS1 could inhibit migration and invasion ability of KIRC cells, which might be involved in suppressing EMT process

    Genome modeling system: A knowledge management platform for genomics

    Get PDF
    In this work, we present the Genome Modeling System (GMS), an analysis information management system capable of executing automated genome analysis pipelines at a massive scale. The GMS framework provides detailed tracking of samples and data coupled with reliable and repeatable analysis pipelines. The GMS also serves as a platform for bioinformatics development, allowing a large team to collaborate on data analysis, or an individual researcher to leverage the work of others effectively within its data management system. Rather than separating ad-hoc analysis from rigorous, reproducible pipelines, the GMS promotes systematic integration between the two. As a demonstration of the GMS, we performed an integrated analysis of whole genome, exome and transcriptome sequencing data from a breast cancer cell line (HCC1395) and matched lymphoblastoid line (HCC1395BL). These data are available for users to test the software, complete tutorials and develop novel GMS pipeline configurations. The GMS is available at https://github.com/genome/gms

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Genome remodelling in a basal-like breast cancer metastasis and xenograft

    Get PDF
    Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour

    Metal nitride heterostructures capsulated in carbon nanospheres to accommodate lithium metal for constructing a stable composite anode

    No full text
    Although various hosts have been proposed to accommodate the Lithium (Li) metal to solve the uneven Li deposition and infinite volume change, the pulverization of the host or lithiophilic modification layer easily leads to structural damage and the poor cycling stability of the composite anode. Herein, we design a host of metal nitrides (Mo2N and WN heterostructures) nanoparticles capsulated in the hollow carbon nanospheres, which can accommodate Li metal to form a stable composite anode. The lithiophilic Mo2N guides uniform infusion and reduces the nucleation barriers of Li metal during electrochemical process. Note that the rigid WN matrix is uniformly composited with Mo2N, which can suppress the pulverization of Mo2N during the repeat Li plating/stripping, ensuring the stability of regulated deposition during long cycling. High mechanical strength, uniform surface potential distribution and good electrolyte wettability of the Li metal-based composite anode guarantee the rapid Li plating/stripping kinetics. Thus, the obtained composite anode can stably cycle 1400 h at 1 mA cm-2 and 1 mA h cm-2 in the symmetric battery. The assembled full cells with LiNi0.8Mn0.1Co0.1O2 (NCM811) also deliver high capacity retention under the high loading (8.6 mg cm-2) or lean electrolyte (2 μL mg-1) condition. This work suggests a promising host structure design to construct a highly stable lithium metal anode for practical applications

    Family of Magic-Sized Carbon Clusters on Transition Metal Substrates

    No full text
    Highly-stable carbon clusters on transition metal substrates play an important role in the bottom-up approaches for synthesizing graphene quantum dots, graphene nanoribbons, and novel graphene nanostructures. Here, the discovery of a series of magic-sized carbon clusters on different transition metal substrates is reported. Careful analyses reveal that the symmetry matching between the cluster and the substrate, the interaction between cluster edge carbon atoms and the substrate, and the location and orientation of the cluster on the substrate play key roles in stabilizing the new family of magic-sized carbon clusters. The identified magic-sized carbon clusters are thermodynamically and kinetically stable and may serve as the nucleation centers in the synthesis of other graphene nanostructures. These findings will greatly enrich the species of highly-stable carbon clusters on transition metal substrates and paving the road toward the synthesis route of other graphene nanostructures

    Delayed Sowing Date Improves Rice Cooking and Taste Quality by Regulating the Quantity and Quality of Grains Located on Secondary Branches

    No full text
    Grains located on different positions of the panicle differed in grain weight and quality performance, however, the comprehensive effect of sowing dates on physiological and quantitative characteristics of grains located on different positions still remains unclear. In this study, a field experiment was conducted with two japonica rice cultivars, Nanjing 9108 and Ningjing 7, under 3 sowing dates (S1, 30th April; S2, 30th May; S3, 30th June). Delayed sowing treatments increased before-heading mean temperature (Tmean), day temperature (Tday), night temperature (Tnight) and mean solar radiation (Smean) for 0.94 °C, 0.99 °C, 1.23 °C, and 1.04 MJ, respectively, while decreased growth duration (GD) for 13.4 days, with 30 days delaying sowing date. Elevated before heading thermal resources and shortened GD contributed to enlarged panicle size via enhancing number of grains on secondary branches (SG) and led to higher ratio of SG per unit area (SG%). Meanwhile, delayed sowing decreased after heading Tmean, Tday, Tnight and Smean by 0.84 °C, 1.23 °C, 1.13 °C, and 2.12 MJ, respectively, with 30 days delaying sowing, and further enhanced rice stickiness (ST), peak viscosity (PKV) and breakdown (BD), but suppressed hardness (HD), amylose content (AC), cold pasting viscosity (CPV), hot pasting viscosity (HPV) and setback (SB) of SG, whilst grains on primary branches (PG) di no significant differences. Elevated taste and cooking quality of SG under delayed sowing was regulated by slower grain filling rate, which is largely regulated by AGPase and GBSS. Compared to PG, SG has better physiochemical, texture properties and RVA profiles due to its slower starch biosynthesis. The above results suggested that physiological (starch biosynthesis of SG) and quantitative parameters (amount of SG) of the rice population should be referred simultaneously to improve rice cooking and taste quality
    corecore