
Construction of EMT related
prognostic signature for kidney
renal clear cell carcinoma,
through integrating bulk and
single-cell gene expression
profiles

Qi Huang1†, Feiyu Li2†, Li Liu2, Rui Xu3, Tao Yang2, Xiaoyun Ma2,
Hongmei Zhang2, Yan Zhou2, Yongxiang Shao2, Qiaofeng Wang2,
Haifeng Xi2 and Yancai Ding2*
1Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China,
2Department of Urology, The 942 Hospital of PLA, Yinchuan, China, 3Department of Laser, General
Hospital of Ningxia Medical University, Yinchuan, China

Introduction: Kidney renal clear cell carcinoma (KIRC), as amain type ofmalignant
kidney cancers, has a poor prognosis. Epithelial-mesenchymal transformation
(EMT) exerts indispensable role in tumor progression and metastasis, including in
KIRC. This study aimed to mine more EMT related details and build prognostic
signature for KIRC.

Methods: The KIRC scRNA-seq data and bulk data were downloaded from GEO
and TCGA databases, respectively. The cell composition in KIRC was calculated
using CIBERSORT. Univariate Cox regression analysis and LASSO Cox regression
analysis were combined to determine the prognostic genes. Gene set variation
analysis and cell-cell communication analysis were conducted to obtain more
functional information. Additionally, functional analyses were conducted to
determine the biological roles of si-LGALS1 in vitro.

Results:We totally identified 2,249 significant differentially expressed genes (DEGs) in
KIRC samples, meanwhile a significant distinct expression pattern was found in KIRC,
involving Epithelial Mesenchymal Transition pathway. Among all cell types,
significantly higher proportion of epithelial cells were observed in KIRC, and
289 DEGs were identified in epithelial cells. After cross analysis of all DEGs and
970 EMT related genes, SPARC, TMSB10, LGALS1, and VEGFA were optimal to build
prognostic model. Our EMT related showed good predictive performance in KIRC.
Remarkably, si-LGALS1 could inhibitmigration and invasion ability of KIRC cells, which
might be involved in suppressing EMT process.

Conclusion: A novel powerful EMT related prognostic signature was built for KIRC
patients, based on SPARC, TMSB10, LGALS1, and VEGFA. Of which, si-LGALS1
could inhibit migration and invasion ability of KIRC cells, which might be involved
in suppressing EMT process.
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1 Introduction

As the third main malignant genitourinary tumor, renal cell
carcinoma (RCC) constitutes more than 90% of all malignant kidney
cancers (Oto et al., 2020). It has been estimated that there are over
400,000 new RCC cases, leading to more than 170,000 deaths
annually around the world (Bray et al., 2018). Kidney renal clear
cell carcinoma (KIRC) has been the predominant histopathological
subtype among all RCC, accounting for over 75% of all RCCs
(Bokhari and Tiscornia-Wasserman, 2017) and over 85% of
metastatic RCC cases (Ricketts et al., 2018). Currently,
computerized tomography and histopathological analyses serve as
the gold standards to diagnose KIRC (Zhang et al., 2021). Moreover,
many novel treatment strategies for KIRC have been recommended
during the past few years, such as single/combinatorial use of anti-
PD-1 antibody (George et al., 2019). Unfortunately, some of KIRC
patients have metastatic diseases at their first diagnosis, and the 5-
year overall survival (OS) rate of metastatic KIRC patients is less
than 10% (Mitchell et al., 2018; Liu et al., 2021a). The prognosis of
KIRC patients is overall frustrated. It has been indicated that
approximately 30% KIRC patients undergo recurrence or
metastasis after nephrectomy (Xu et al., 2023a), which is a big
obstacle in improving the prognosis. Although increasing studies
have explored various diagnostic or prognostic biomarkers for KIRC
(Wu et al., 2023), novel reliable markers are still urgently needed to
optimize the early KIRC detection and clinical treatment strategies,
in order to further improve the prognosis of KIRC patients.

Metastasis and recurrence are the predominant fatal causes for
many malignant tumor patients, and KIRC is no exception.
Epithelial-mesenchymal transformation (EMT), as a reversible
cellular process, has been widely reported in many cancers
regarding its indispensable role in tumor progression and
metastasis (Cen et al., 2023), including renal cancer (Piva et al.,
2016). There are totally three types of EMT process, of which type III
has been regarded as an important process in tumorigenesis and
tumor metastasis (Pastushenko and Blanpain, 2019; Bakir et al.,
2020). During the EMT process, the cells gradually lose their
epithelial phenotypes and change to mesenchymal cells, along
with great migratory and even invasion ability obtaining (Roche,
2018; Feng et al., 2022). Zhong et al. have recently documented that
LIMD2 is found to activate the ILK/Akt pathway in KIRC via
inducing EMT process, thereby promoting the malignant
progression and poor prognosis of KIRC (Zhong et al., 2022).
Moreover, another study has constructed a prognostic model
based on twelve EMT-related lncRNAs for KIRC, exhibiting good
predictive performance (Xia et al., 2022). Additionally, in ovarian
cancer, it has been indicated that SLFN5 is able to promote EMT,
besides EMT and invasion movement could be significantly
inhibited by SLFN5 silencing (Xu et al., 2023b). Collectively,
accumulating studies have evidenced that EMT exerts tumor
promoting role via multiple pathways and mechanisms (Kim
et al., 2016; Wang et al., 2018). Hence, it is a promising direction
to further focus on EMT related genes in KIRC via integrating
single-cell RNA-sequencing (scRNA-seq) data and bulk RNA-
sequencing data.

The genetic abnormalities and intratumoral heterogeneity of
KIRC greatly affect the patients’ distant metastasis and drug
resistance, thereby influencing prognosis (Wang et al., 2018).

More recently, scRNA-seq has emerged as a powerful tool to
clarify thousands of cells per tumor (Wang et al., 2018), which is
conducive to understanding the intratumoral heterogeneity of
various cancers. Accordingly, we herein jointly analyzed the
KIRC scRNA-seq data and bulk RNA-sequencing data, in order
to build reliable EMT related signature for KIRC patients. Our data
are promising to provide more reference information for better
KIRC clinical treatment strategies.

2 Materials and methods

2.1 Data collection

Firstly, the TCGA-KIRC cohort was downloaded from The
Cancer Genome Atlas (TCGA) database (https://tcga-data.nci.nih.
gov/tcga/), using TCGAbiolinks package of R. There were 72 pairs of
KIRC samples and adjacent normal samples in TCGA-KIRC cohort,
and the detailed sample information were listed in Supplementary
Table S1.

In addition, we also obtained three scRNA-seq datasets
GSE178481, GSE156632, GSE159115 from Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/).
The scRNA-seq data of totally 32 pairs of samples (KIRC
samples and adjacent normal samples) were obtained from
16 KIRC patients (Supplementary Table S2). The expression data
of 101 KIRC samples in E-MTAB-1980 cohort (ArrayExpress) were
also included in this study, and the detailed sample information were
listed in Supplementary Table S3 (Wang et al., 2018).

2.2 scRNA-seq data analysis

The raw sequencing reads were aligned to the GRCh38 human
reference genome. Feature-barcode matrices were then generated using
the Cell Ranger with the standard pipeline. Then eligible cells were
selected according to the following criteria: 1) gene numbers between
200 and 20,000; 2) unique molecular identifier (UMI) count >300; 3)
mitochondrial gene percentage <40%. After screening the top
2,000 highly variable genes (HVGs) from the normalized matrix, the
principal component analysis (PCA) was used for the dimensionality
reduction. The clustering analysis was conducted using Louvain
clustering algorithm from Seurat (Aran et al., 2019). The top 30 PCs
were selected for uniform manifold approximation and projection
(UMAP) to visualize the cell clustering results (Becht et al., 2018).
Cell types were annotated by known cell markers, employing SingleR
package (Aran et al., 2019).

For a systematic analysis of cell-cell interaction, we further
performed the cellular communication analysis, utilizing Cellchat
with default parameters (Jin et al., 2021).

2.3 Immune cell infiltration analysis

Next, the immune cell infiltration in KIRC was analyzed using
CIBERSORT (Newman et al., 2015). The marker genes of different
cell types in scRNA-seq data were obtained using scMappR
(Sokolowski et al., 2021), which were taken as the input data of
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CIBERSORT. The profile generated from scMappR was then
employed to conduct deconvolution analysis on bulk data in
TCGA-KIRC cohort.

2.4 Survival analysis

Regarding the prognosis of different groups, survival and
survminer R packages (https://CRAN.R-project.org/package=
survminer) were used to estimate the overall survival (OS) basing
on Kaplan-Meier method. The difference significance of OS among
different groups was determined by log-rank test.

2.5 Functional enrichment analysis

The functional information was analyzed using gene set
variation analysis (GSVA), employing MSigDB signature gene
sets “Hallmark” (https://www.gseamsigdb.org/gsea/msigdb/index.
jsp). The pathways with p-value < 0.05, logFC > 0.5 were
considered statistically significant.

2.6 Cell culture and qRT-PCR analysis

The human embryonic kidney cell line HEK293T and renal cell
carcinoma cell line 786-O were both cultured in Dulbecco’s
modified Eagle medium (DMEM; Gibco, Grand Island, NY,
United States) containing 1% penicillin/streptomycin and 10%
fetal bovine serum (Gibco). The cells were placed in a humidified
incubator maintained at 37°C with 5% CO2.

Total RNA was extracted from the cells using TRIzol Universal
total RNA extraction reagent (Invitrogen, Carlsbad, CA,
United States). The quality and concentration of the extracted
RNA were assessed using an UV spectrophotometer. Once
qualified, reverse transcription was done using Transcriptor First
Strand cDNA Synthesis Kit (GenStar, Beijing, China). Subsequently,
qPCR assay was conducted employing LightCycler 480 Fluorescence
Quantitative System (Roche, Basel, Switzerland). The reference gene
was β-actin, and the primer sequences were listed in Supplementary
Table S4. The mRNA expression levels were calculated according to
the 2−ΔΔCT method (three repeats).

2.7 Cell transfection

LGALS1 knockdown was generated using small interfering RNAs
(siRNAs). In addition, LGALS1 siRNA sequences were included in
Supplementary Table S5. Briefly, cells were seeded at 50% confluence in
a 6-well plate and infected with negative control (NC), and knockdown
(si-LGALS1). All transfections were carried out with Lipofectamine
3000 (Invitrogen, Carlsbad, CA, United States).

2.8 Scratch assay

A total of 7×105 cells were seeded in each well of a 6-well plate
for 24 h. A line was drawn in the middle of the well with a 10 μL

pipette tip. After washing with PBS twice, cells were cultured for 24 h
in a 37°C incubator. Then, wounds were photographed by
microscope at different time intervals. The distances of the
wounds were measured by photoshop.

2.9 Migration and invasion assays

The migration and invasion capacities of si-control and si-
LGALS1 cells were analyzed by polycarbonate membranes (8 μm
pore) in 24-well transwell chambers (Coring, NY, United States).
About 1×104 cells in serum-free medium containing 0.1% BSA were
added to the upper chamber. The medium supplemented with 0.1%
BSA and EGF (50 ng/mL, MCE, NJ, United States) were added into
the down chamber. After 24 h incubation, cells in the upper chamber
were completely scraped and trans to the lower membrane. The
polycarbonate membranes were fixed and stained with Giemsa
solution (Solarbio, Beijing, China) and photographed by
microscope.

For invasion assay, transwell chambers were coated with
prediluted extracellular matrix (3 mg/mL, Merck, Darmstadt,
Germany) for 1 h before adding cells on the upper chamber. The
next steps were conducted similarly to the above transwell migration
assay.

2.10 Statistical analysis

Wilcoxon’s rank-sum test was used to determine the
difference significance between cancer samples/tumor cells
and adjacent samples/normal cells. The univariate Cox
regression analysis was performed using the survival package
of R. Receiver operating characteristic (ROC) analysis and area
under curve (AUC) calculation were conducted using
survivalROC package. The forest plots were generated using
the forestplot package. The nomogram plots were built
employing rms package. p-value < 0.05 was taken as
statistically significant.

3 Results

3.1 Distinct expression pattern in KIRC
comparing to normal samples

In this work, KIRC scRNA-seq data and bulk RNA-sequencing
data have been jointly analyzed, and the overall workflow was
displayed in Figure 1A. Totally 72 KIRC samples and the
corresponding paired adjacent samples were downloaded from
the TCGA-KIRC cohort, which then underwent differential gene
expression analysis. Compared to adjacent samples, there were
totally 2,249 significant differentially expressed genes (DEGs) in
KIRC samples (|logFC| > 1.5, false discovery rates (FDR) < 0.05, p <
0.05), comprising 1,233 upregulated genes and 1,016 downregulated
genes (Figure 1B).

The above 2,249 DEGs were subjected to a GSVA analysis, in
order to obtain more functional information. We found that
1,233 upregulated genes and 1,016 downregulated genes were
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significantly enriched in 17 pathways and 3 pathways, respectively
(p < 0.05, Figure 1C). Of which, we noticed that basing on
upregulated genes in KIRC samples, multiple tumor related
pathways have been significantly enriched, including
HALLMARK Epithelial Mesenchymal Transition.

3.2 Significantly higher proportions of
epithelial cells were found in KIRC samples
at a single cell resolution

Next, three scRNA-seq datasets GSE178481, GSE156632,
GSE159115 were downloaded and analyzed. A total of 16 KIRC
samples and the 16 corresponding paired normal samples were
maintained for our subsequent analysis. After filtrating, 114,812 cells
were obtained, including 76,726 cancerous tissue cells and

38,086 adjacent cells. UMAP analysis indicated that all cells were
clustered into 20 clusters (Figure 2A). Then, all cells were annotated
into 11 cell types, basing on the known marker genes (Figure 2B). Of
which, CD3D, CCL5, IL7R were included as T cell markers,
PDZK1IP1, ALDOB, GPX3 were included as Proximal tubule cell
markers, PLVAP, VWF, PECAM1 were included as endothelial cell
markers, C1QA, C1QB, C1QC were included as macrophage cell
markers, MYL9, TAGLN, ACTA2 were included as pericyte cell
markers, LYZ, FCN1, S100A9 were included as monocyte cell
markers, NKG7, GNLY, KLRB1 were included as natural killer
cell markers, KRT8, KRT18, NNMT, NDUFA4L2, CD24 were
included as epithelial cell markers, CLEC10A, CD1C were
included as dendritic cell markers, TMEM213, ATP6V1G3,
ATP6V0D2 were included as collecting ductal cell markers, and
TPSB2, TPSAB1, CPA3 were included as mast cell markers
(Figure 2C).

FIGURE 1
Distinct expression pattern in KIRC samples comparing to normal samples. (A) The overall workflowof this study. (B) The heatmap of DEGs between
KIRC samples and paired normal samples. (C) The GSVA results based on all 2,249 significant DEGs.
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The expression data of the above 11 cell types were analyzed
employing scMappR. The signature expression matrix of all cell
types was obtained (Figure 2D). Taking the signature expression
matrix as the input data of CIBERSORT, the KIRC samples from
TCGA cohort were then subjected a deconvolution analysis. The

results indicated that epithelial cells and other 7 types of cells
exhibited significantly differential cell proportions between KIRC
samples and adjacent samples (Figure 2E). Besides, among all 11 cell
types, significantly higher proportion of epithelial cells was observed
in KIRC samples (Figure 2E). Significantly higher proportion of

FIGURE 2
Significantly higher proportions of epithelial cells were found in KIRC samples at a single cell resolution. (A) Totally 76,726 cancerous tissue cells and
38,086 adjacent cells were filtered using UMAP (resolution = 0.3). (B) KIRC and normal samples were annotated into 11 cell types. (C) The dotplot showed
the marker genes’ expression in 11 types of cells. (D) The heat map of marker genes’ expression in KIRC. (E) The cell composition of KIRC and normal
samples. The p-value was determined by Wilcoxon’s rank-sum test. *p < 0.05; ****p < 0.0001.
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epithelial cells probably contributed more to the distinct expression
pattern of KIRC samples.

3.3 Differentially expressed candidate genes
in epithelial cells in KIRC samples

Accordingly, we have focused on the epithelial cells in KIRC
samples. Based on the marker genes, the epithelial cells were found,
including cluster 7, 8, 10, 16, 17 (Figures 3A, B). Compared to
epithelial cells in normal cells, 289 DEGs were identified in epithelial
cells in KIRC samples, of which 97 genes were upregulated and
192 were downregulated (|logFC| > 0.5, p-value < 0.05, Figure 3C).

Considering that the DEGs obtained based on TCGA cohort
were significantly enriched in Epithelial Mesenchymal Transition
pathway, 970 EMT related genes were downloaded from EMTome
database (http://www.emtome.org) and CancerSEA database
(http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp) (Supplementary
Table S6). Next, a cross analysis was performed on the above
2,249 DEGs (TCGA cohort), 289 DEGs (single cell datasets), and

970 EMT related genes. Totally 12 overlapped genes were finally
identified, including IGFBP3, SPARC, CAV1, TMSB10, LGALS1,
NNMT, VCAM1, IL32, VEGFA, AQP3, MUC1, EPCAM
(Figure 3D). Of them, in TCGA cohort, 9 genes were
significantly upregulated, and 3 genes were significantly
downregulated (Figure 1B). Notably, SPARC, CAV1, TMSB10,
LGALS1, and VEGFA were also significantly upregulated in
epithelial cells in KIRC samples, which were regarded as the hub
candidate genes in our following analysis.

3.4 Reliable EMT related prognostic
signature was constructed for KIRC patients

Subsequently, the five hub candidate genes were then subjected
to an univariate Cox regression analysis to screen the KIRC
prognosis related genes. We found that SPARC, TMSB10,
LGALS1, and VEGFA showed significant prognostic value in
KIRC (Figure 4A). To further optimize the prognostic genes, the
LASSO Cox regression analysis was conducted on the above four

FIGURE 3
Differentially expressed candidate genes in epithelial cells in KIRC samples. (A,B) The feature plot indicated the KRT18 andNNMT expression in all cell
types. KRT18was themarker of epithelial cells, andNNMTwas themarker of tumor cells. (C) TheDEGs identified in epithelial cells in KIRC samples. (D) The
Venn diagram based on 2,249 DEGs (TCGA cohort), 289 DEGs (single cell datasets), and 970 EMT related genes.
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FIGURE 4
Identification of EMT related prognostic genes and prognostic signature construction in KIRC. (A) The results of univariate Cox regression analysis
conducted on candidate EMT related genes. (B,C) The results of LASSOCox regression analysis. The lambda.min valuewas 4. (D) The samples distribution
based on high and low risk score. (E) The survival analysis between high and low risk KIRC patients. (F) The time dependent ROC analysis.
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genes, and the results indicated that there were still four genes
according to lambda.min value (Figures 4B, C).

Based on SPARC, TMSB10, LGALS1, and VEGFA, the EMT
related risk score was then built. To demonstrate the performance of
the model, we firstly applied it to the TCGA training cohort, which
had a high accuracy in predicting of prognosis (Supplementary
Figures S1A–C). Also the mutation data of TCGA-KIRC was
employed to explore the relationship between risk score and
TMB. The correlation between risk score and TMB was moderate
and significant. Moreover, the TMB in high-risk groups was
significantly higher than that in low-risk groups (Supplementary
Figures S2A–D). Next the KIRC samples in E-MTAB-1980 dataset
were divided into high and low risk groups, according to the median
risk score. We found that high risk KIRC patients had significantly
worse prognosis (p < 0.05) comparing to low risk patients (Figures
4D, E). Moreover, the time dependent ROC analysis suggested that
the AUC values of 1-, 3-, 5-year was 0.661, 0.623, 0.613, respectively
(Figure 4F), implying a good predictive performance of the EMT
related risk score. Next, risk score was explored according to the
related clinical pathological characteristics of KIRC samples. The
results showed that the risk score has a significant difference
between different pathological groups based on stage and TNM
status (Figures 5A–D). Additionally, a Nomogram model was also
constructed based on risk score, gender, age, stage, and metastasis
status (Figure 5E). The 1-, 3-, 5-year calibration curves showed that
the Nomogram model involving EMT related risk score could
reliably predict KIRC patients’ prognosis (Figure 5F), which
further evidenced the good predictive performance of the EMT
related risk score.

3.5 Distinct drug sensitivity between risk
groups

The distinct immunotherapy response between the high- and
low-risk groups were investigated using the R package OncoPredict.
Among the 198 chemotherapeutic drugs, Dactinomycin_1911,
Elephantin_1835 and ERK_6604_1714 had significantly lower
predicted IC50 values in the higher than in the lower risk group
with the top 3 negative correlation between IC50 and risk score
(Supplementary Figures S3A–F).

3.6 Significantly enhanced epithelial cell
cell-cell communications were observed in
VEGF signaling pathway

Furthermore, to obtain more cell talk details between KIRC and
adjacent samples at a single cell resolution, the cell-cell
communication analysis was conducted on KIRC cells and
adjacent cells using Cellchat. The possible cell-cell interaction
numbers in KIRC cells and adjacent cells were displayed in
Figures 6A, B, respectively.

As a famous process, EMT has been indicated to confer efficient
tumorigenicity to tumor cells via activating vascular endothelial
growth factor (VEGF) pathway (Fantozzi et al., 2014). Thus, we have
also analyzed the cell communication of 11 cell types in VEGF
pathway network, in order to better understand the EMT related

functions. Our results suggested that epithelial cells and endothelial
cells showed higher communication probability in KIRC samples
than in adjacent samples (Figures 6C, D). The communication
probability of epithelial cells in KIRC samples and adjacent
samples were 0.21 and 0.14, separately. Moreover, the potential
ligand-receptor interactions in KIRC cells were predicted, and there
were more ligand-receptor interactions between epithelial cells and
endothelial cells (Figure 6E). Moreover, VEGFA, as one of the four
genes in the prognostic signature, is a member of the PDGF/VEGF
growth factor family. The Kaplan-Meier survival curve predicted
that VEGFA could be a factor for patients’ prognosis
(Supplementary Figures S4A, B).

3.7 EMT related hub genes’ validation and
functions in vitro

Furthermore, the expressions of hub EMT related genes in risk
score, SPARC, TMSB10, LGALS1, and VEGFA, were validated
in vitro. The results of qRT-PCR showed that there were
significantly higher mRNA expressions of SPARC, TMSB10,
LGALS1, and VEGFA in 786-O cells, comparing to 293T cells
(Figure 7A).

Of which, we noticed that LGALS1 showed the most significant
expression difference between tumor and normal cells, thus effects
of LGALS1 on KIRC cell migration and invasion ability were
further explored. Then, the interference RNA and control were
transfected into 786-O cells, and the silencing of LGALS1 was
confirmed by RT-qPCR in 786-O cells (Figure 7B). Moreover,
knockdown of LGALS1 significantly downregulated the mRNA
expressions of multiple EMT related markers, including Slug,
Zeb1, N-cadherin, and Vimentin (Figure 7B), implying
LGALS1 probably contributed to suppress EMT process. The
scratch assay indicated that si-LGALS1 significantly suppressed
the 786-O cell migration capacity compared to control cells
(Figure 7C). Besides, results of transwell migration and invasion
assays suggested that migration and invasion ability of KIRC cells
were significantly inhibited by si-LGALS1 (Figure 7D).
Collectively, our data indicated that si-LGALS1 could inhibit
the cell migration and invasion ability of KIRC, which might be
involved in suppressing EMT process.

4 Discussion

Despite great efforts have been devoted into the therapeutic
development and survival improvement, KIRC is prone to
metastasize and the 5-year overall survival of metastatic KIRC
patients is still frustrated (Yang et al., 2022). Obviously, it is
quite imperative for improving prognosis to mine more details of
pathogenesis of KIRC, especially regarding the metastasis of KIRC
patients. In our present study, we have not only intensively
integrated the KIRC scRNA-seq data and bulk RNA-sequencing
data, but also focused on the EMT process and its related genes in
KIRC. Finally, hub genes SPARC, CAV1, TMSB10, LGALS1 were
identified in epithelial cells in KIRC, based on which, a reliable EMT
related prognostic signature was constructed for KIRC patients,
exhibiting excellent prognostic value. More importantly, we found
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that si-LGALS1 could inhibit the cell migration and invasion ability
of KIRC, which might be involved in suppressing EMT process in
vitro.

Basing on bulk RNA-sequencing data in TCGA-KIRC cohort,
we totally identified 2,249 significant DEGs in KIRC samples,
meanwhile a significant distinct gene expression pattern was

FIGURE 5
(A–D) Difference analysis between clinical pathological characteristics and risk score. (E) Nomogram model was also constructed based on risk
score, gender, age, stage, and metastasis status. (F) The 1-, 3-, 5-year calibration curves of Nomogram.
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FIGURE 6
Significantly enhanced epithelial cell cell-cell communications were observed in VEGF signaling pathway. (A,B) The possible cell-cell interaction
numbers in KIRC cells and adjacent cells, separately. (C,D) The cell communication of 11 cell types in VEGF pathway network in KIRC cells and adjacent
cells, respectively. (E) Potential ligand-receptor interactions in KIRC cells.
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indeed found in KIRC samples comparing to normal samples.
Hence, the functional information of the DEGs was then
analyzed, of which Epithelial Mesenchymal Transition pathway
attracted our attention. EMT often exerted tumor promoting role
in many cancers. Typically, EMT occurred along with
downregulated epithelial markers (like E-cadherin) and
upregulated mesenchymal markers (like Vimentin and
N-cadherin), leading to the detachment and elongation of the
cells (Zhu et al., 2013). It has been suggested to play crucial roles
in initial invasion and metastasis cascades of tumor cells, including
in KIRC (Das et al., 2019; Gao et al., 2022). It follows that there is
complicated potential association between the distinct expression
pattern in KIRC and EMT.

Accordingly, to further clarify the potential crucial contributors
of the distinct gene expression pattern in KIRC at a single cell
resolution, scRNA-seq datasets and signature matrix were employed
to characterize the important cell composition in KIRC. Our data
indicated that among all 11 cell types in KIRC, significantly higher
proportion of epithelial cells was observed. Next, focusing on the
epithelial cells in KIRC, 289 DEGs were identified in epithelial cells
in KIRC. These data based on scRNA-seq data could just be
connected with our findings in bulk RNA-sequencing data.
Although we cannot curtly conclude whether significantly higher
epithelial cell proportions in KIRC would refer to a higher
probability of EMT onset, our results still implied a promising
probability involving epithelial cells and EMT, KIRC metastasis.

FIGURE 7
EMT related hub genes’ validation and functions in vitro. (A) The relative mRNA expressions of SPARC, TMSB10, LGALS1, and VEGFA in cell lines,
detected by q-PCR. (B) EMT related markers in LGALS1 silencing 786-O cells. (C) The scratch assay in LGALS1 silencing 786-O cells. (D) The transwell
migration and invasion assays in LGALS1 silencing 786-O cells. Three independent experiments were performed in 786-O cell lines and all data were
presented as the means ± SD of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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In the dynamic and reversible transition during EMT, the typical
features of epithelial cells would be deprived, like junctions and
baso-apical polarity, whereas they would gradually be acquired
back-to-front polarity and the ability to migrate and invade
surrounding tissues (Manfioletti and Fedele, 2022). It has been
demonstrated that the high plasticity of EMT is mainly regulated
by the epigenetics modifications, predominantly involving histone
modification of core EMT related transcription factors, for instance
SNAIL, SLUG, TWIST, and ZEB (Manfioletti and Fedele, 2022). In
KIRC, many studies have evidenced that the EMT was triggered by
the regulatory axis including the above transcription factors, which
then contributed the carcinogenesis features of tumor (Liu et al.,
2018; Liu et al., 2021b).

Subsequently, the cross analysis of all DEGs and 970 EMT
related genes obtained 12 overlapped genes, of which SPARC,
CAV1, TMSB10, LGALS1, and VEGFA were significantly
upregulated in epithelial cells and KIRC. After univariate Cox
regression analysis and LASSO Cox regression analysis, we finally
identified four hub EMT related genes in KIRC, including SPARC,
TMSB10, LGALS1, and VEGFA. The EMT related prognostic
signature based on the above four hub genes exhibited excellent
prognostic value in KIRC. SPARC (Secreted protein, acidic and rich
in cysteine) encodes a small molecule glycoprotein osteopontin,
which mainly involves in the regulation of cell adhesion,
proliferation, and spreading (Schellings et al., 2009). As an EMT
related gene, the prognostic value of SPARC has been reported in
many tumors, like breast cancer (Schellings et al., 2009) and lung
cancer (Ma et al., 2022). Meanwhile, SPARC has also been studied
solely in KIRC, which implied that it might be a key mediator of
TGF-β-induced renal cancer metastasis (Bao et al., 2021). Their
work could partly explain the prognostic role of SPARC we found.
TMSB10 (Thymosin β10), as a member in β-thymosin family,
participates in the control of the cytoskeletal microfilament
system as actin-binding protein (Bao et al., 2021). Recently, its
role in tumor development has been widely studied. For instance,
declined TMSB10 expression was involved in the DNMT1/miR-
152-3p/TMSB10 axis to suppress the colorectal cancer development
(Wang et al., 2020). High expression of TMSB10 was associated with
the bladder cancer progression and poor prognosis of patients
(Wang et al., 2019). Additionally, TMSB10 has been indicated to
be overexpressed in RCC, promoting the tumor cell malignant
metastasis by inducing EMT (Xiao et al., 2019), which was
consistent with our data. Moreover, LGALS1 (Galectin-1) could
interact with extracellular matrix glycoproteins, exerting crucial
roles in cell division, migration, adhesion, and invasion (Li et al.,
2023a). Considering its most significant aberrant expression in vitro,
we further focused on its functions and finally found that si-LGALS1
could inhibit the cell migration and invasion ability of KIRC, which
might be involved in suppressing EMT process. Numerous studies
have provided the consistent findings that it functioned as a tumor
promoting factor in multiple cancers, such as in gastric cancer
(Zhang et al., 2022) and ovarian cancer (Li et al., 2023b).
Collectively, all above evidences have directly or indirectly
supported our findings, providing potential clues regarding the
prognostic value of our EMT related signature of KIRC.

As for VEGFA, it is an important mediator of vascular
development such as angiogenesis, meanwhile angiogenesis is a
pivotal event in tumor progression (Zhang et al., 2023). In our

study, significantly enhanced epithelial cell cell-cell communications
were observed in VEGF signaling pathway in KIRC. KIRC has been
widely known as a tumor with rich angiogenesis, meanwhile
angiogenesis is a necessary process of tumor development (Li D.
X. et al., 2023). It has been indicated that VEGF could enhance the
angiogenesis and cell proliferation of endothelial cells in KIRC
(Edeline et al., 2012). Therefore, the VEGF related signal was
also a significant aspect in the distinct expression pattern
formation of KIRC, which deserved to be further investigated in
our future work.

5 Conclusion

In conclusion, we have constructed a novel powerful EMT
related prognostic signature for KIRC patients, based on SPARC,
TMSB10, LGALS1, and VEGFA. Of which, si-LGALS1 could inhibit
the cell migration and invasion ability of KIRC, which might be
involved in suppressing EMT process in vitro. Furthermore,
combining KIRC scRNA-seq data and bulk RNA-sequencing data
mining, a significant distinct expression pattern was observed in
KIRC comparing to normal samples, involving in the EMT related
signals. Our data are expected to uncover more details associating
with EMT in KIRC, meanwhile the EMT related prognostic
signature is conducive to developing better clinical management
strategy for KIRC patients.
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