103 research outputs found

    A statistical test procedure for detecting multiple outliers in a data set

    Get PDF
    There are no author-identified significant results in this report

    Crop identification technology assessment for remote sensing. (CITARS) Volume 9: Statistical analysis of results

    Get PDF
    Results are presented of CITARS data processing in raw form. Tables of descriptive statistics are given along with descriptions and results of inferential analyses. The inferential results are organized by questions which CITARS was designed to answer

    Error analysis of leaf area estimates made from allometric regression models

    Get PDF
    Biological net productivity, measured in terms of the change in biomass with time, affects global productivity and the quality of life through biochemical and hydrological cycles and by its effect on the overall energy balance. Estimating leaf area for large ecosystems is one of the more important means of monitoring this productivity. For a particular forest plot, the leaf area is often estimated by a two-stage process. In the first stage, known as dimension analysis, a small number of trees are felled so that their areas can be measured as accurately as possible. These leaf areas are then related to non-destructive, easily-measured features such as bole diameter and tree height, by using a regression model. In the second stage, the non-destructive features are measured for all or for a sample of trees in the plots and then used as input into the regression model to estimate the total leaf area. Because both stages of the estimation process are subject to error, it is difficult to evaluate the accuracy of the final plot leaf area estimates. This paper illustrates how a complete error analysis can be made, using an example from a study made on aspen trees in northern Minnesota. The study was a joint effort by NASA and the University of California at Santa Barbara known as COVER (Characterization of Vegetation with Remote Sensing)

    Astronaut Bone Medical Standards Derived from Finite Element (FE) Models of QCT Scans from Population Studies

    Get PDF
    This work was accomplished in support of the Finite Element [FE] Strength Task Group, NASA Johnson Space Center [JSC], Houston, TX. This group was charged with the task of developing rules for using finite-element [FE] bone-strength measures to construct operating bands for bone health that are relevant to astronauts following exposure to spaceflight. FE modeling is a computational tool used by engineers to estimate the failure loads of complex structures. Recently, some engineers have used this tool to characterize the failure loads of the hip in population studies that also monitored fracture outcomes. A Directed Research Task was authorized in July, 2012 to investigate FE data from these population studies to derive these proposed standards of bone health as a function of age and gender. The proposed standards make use of an FE-based index that integrates multiple contributors to bone strength, an expanded evaluation that is critical after an astronaut is exposed to spaceflight. The current index of bone health used by NASA is the measurement of areal BMD. There was a concern voiced by a research and clinical advisory panel that the sole use of areal BMD would be insufficient to fully evaluate the effects of spaceflight on the hip. Hence, NASA may not have a full understanding of fracture risk, both during and after a mission, and may be poorly estimating in-flight countermeasure efficacy. The FE Strength Task Group - composed of principal investigators of the aforementioned population studies and of FE modelers -donated some of its population QCT data to estimate of hip bone strength by FE modeling for this specific purpose. Consequently, Human Health Countermeasures [HHC] has compiled a dataset of FE hip strengths, generated by a single FE modeling approach, from human subjects (approx.1060) with ages covering the age range of the astronauts. The dataset has been analyzed to generate a set of FE strength cutoffs for the following scenarios: a) Qualify an applicant for astronaut candidacy, b) Qualify an astronaut for a long-duration (LD) mission, c) Qualify a veteran LD astronaut for a second LD mission, and d) Establish a non-permissible, minimum hip strength following a given mission architecture. This abstract will present the FE-based standards accepted by the FE Strength Task Group for its recommendation to HHC in January 2015

    Estimation of percentage points and the construction of tolerance limits

    Get PDF
    Estimation of percentage points and construction of tolerance limit

    Informal Statistics Help Desk

    Get PDF
    Back by popular demand, the JSC Biostatistics Lab is offering an opportunity for informal conversation about challenges you may have encountered with issues of experimental design, analysis, data visualization or related topics. Get answers to common questions about sample size, repeated measures, violation of distributional assumptions, missing data, multiple testing, time-to-event data, when to trust the results of your analyses (reproducibility issues) and more

    Assessing the Effect of Spaceflight on the Propensity for Astronauts to Develop Disc Herniation

    Get PDF
    A previous study reported that the instantaneous risk of developing a Herniated Nucleus Pulposus (HNP) was higher in astronauts who had flown at least one mission, as compared with those in the corps who had not yet flown. However, the study only analyzed time to HNP after the first mission (if any) and did not account for the possible effects of multiple missions. While many HNPs occurred well into astronauts' careers or in somecases years after retirement, the higher incidence of HNPs relatively soon after completion of space missions appears to indicate that spaceflight may lead to an increased risk of HNP. In addition, when an HNP occurs after spaceflight, is it related to previous spaceflight exposure? The purpose of this study was to investigate whether multiple missions, sex, age, vehicle landing dynamics, and flight duration affect the risk of developing an HNP usinga competing risks model. The outcome of the study will inform the Human System Risk Board assessment of back pain, inform the risk of injury due to dynamic loads, and update the previous dataset, which contained events up to December 31, 2006

    Effects of Speed and Visual-Target Distance on Toe Trajectory During the Swing Phase of Treadmill Walking

    Get PDF
    Toe trajectory during swing phase is a precise motor control task that can provide insights into the sensorimotor control of the legs. The purpose of this study was to determine changes in vertical toe trajectory during treadmill walking due to changes in walking speed and target distance. For each trial, subjects walked on a treadmill at one of five speeds while performing a dynamic visual acuity task at either a far or near target distance (five speeds two targets distances = ten trials). Toe clearance decreased with increasing speed, and the vertical toe peak just before heel strike increased with increasing speed, regardless of target distance. The vertical toe peak just after toe-off was lower during near-target visual acuity tasks than during far-target tasks, but was not affected by speed. The ankle of the swing leg appeared to be the main joint angle that significantly affected all three toe trajectory events. The foot angle of the swing leg significantly affected toe clearance and the toe peak just before heel strike. These results will be used to enhance the analysis of lower limb kinematics during the sensorimotor treadmill testing, where differing speeds and/or visual target distances may be used

    New dimension analyses with error analysis for quaking aspen and black spruce

    Get PDF
    Dimension analysis for black spruce in wetland stands and trembling aspen are reported, including new approaches in error analysis. Biomass estimates for sacrificed trees have standard errors of 1 to 3%; standard errors for leaf areas are 10 to 20%. Bole biomass estimation accounts for most of the error for biomass, while estimation of branch characteristics and area/weight ratios accounts for the leaf area error. Error analysis provides insight for cost effective design of future analyses. Predictive equations for biomass and leaf area, with empirically derived estimators of prediction error, are given. Systematic prediction errors for small aspen trees and for leaf area of spruce from different site-types suggest a need for different predictive models within species. Predictive equations are compared with published equations; significant differences may be due to species responses to regional or site differences. Proportional contributions of component biomass in aspen change in ways related to tree size and stand development. Spruce maintains comparatively constant proportions with size, but shows changes corresponding to site. This suggests greater morphological plasticity of aspen and significance for spruce of nutrient conditions
    corecore