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ABSTRACT
This paper provides the experimenter with one method
of performing several statistical tests, when the data
distribution is not normal or is unknown. The method is

applied to simulated landing data for a lunar. excursion

«

module.




INTRODUCTION

An errcr frequently committed in statistical analysis
of daté obtained for reliability studies is to assume that
the population from which the data is taken has a normal
distribution when, in fact, it does not. One effect df
" making such‘an effor is that probabilities and tolerance
limits obtained by standard statistical techniques are invalid;
hence, if the reliability criterion is very stringent, the

conclusions reached might lead to disastrous consequences.

This paper is divided into three sections. The first
section contains an example of the false conclusions that
may be obtained when the data is erroneocusly assumed to be
from a normal distribution. Thg‘second section contains four
theorems that enable the experimenter to péf?orm a reliability
study when the distribution is not normal or is unknown. The

third section illustrates the use of the theorems developed

in Section II.




e ) SYMBOLS
. ", Y . : . .
X, R, ViJ’ Z Random variables unless specified otherwise.
n ' Sample size.
Ep (100 x p) the percentage point of the

distribution of X

Xy ith Sample value of X.
x(1) ith Ordered Sample value of X.
R(z) Cumulative distribution function of X.
{1.e., F(z) = Pr {X < z}]
n nl
(g) Binomiallcoefficient equal to FTG-TT
% E}p, a, 8 Probabilities.
|
All lower-case Constants, unless specified otherwise.
letters ’
¥ c Mean.
2
o Variance.
¢(x) Cumulative distribution function of a

standardized normally-distributed random

variasble.




£f{x)

IB(k,mS

. 3
Probability density func;ion of X.
Total number of observations < z,.

Incomplete Beta function with parameters

"k and m.




SECTION I - EXAMPLE OF ERROR

In many cases, reaction times have a log normal
distribution‘d) with parameters u and o?; i.e., their
logarithms are normally distributed with mean y and variance
o?2. If an experimenter observes a sample of reaction times,
R, and estimates probabilities of R exceeding given values,
he incorporates serious errors into his estimates by assuming
that R is normally distributed. The magnitude of the error

can be best illustrated by the following example.

Table I shows 150 observations of a random variable, R,
having the log normal digtribution, arranged in ascending order.
A number, t, is desired such that the probability of R
exceeding.t is small, for 1nstance,:1-8, where g8 is a number

close to 1.

If R is normally distributed and 8 equals .9986, t would

be estimated by the familiar expression:

best = R *+ Sp (1]

where R and SR are the sample mean and standard derivations
of the data. However, R is not normally distributed, and
estimation of t by equation [1] is erroneocus. If R is
incorreztly assumed to be normally distributed, one would

obtain

t1ncorrect, = .435 + 3(.219) = 1.092




TABLE . I - VALUES OF R ARRANGED IN

ASCENDING ORDER

L1420 .2572 .3356 Jh214 5997
.1423 .2578 3398 U276 .6062
.1l59 .2585 3433 4301 .6079
L1477 .2649 +3566 Lab1 .6237
.1503 .2658 .3570 Lauuq .6361
L1546 .2730 . 3600 by77 .6398
.1558 2771 .3604 4620 L6U42
.1948 2779 .3613 4655 6475
.1982 .2805 .3621 4678 .6&79
.2010 .2855 .3634 U698 .6530
. 2056 .2885 .3635 L4807 .6601
.2100 .2921 .3704 4828 .6666
.2127 .2921 .3708 L4835 .6681
.2175 2927 .3810 4866 6706
.2183 .2935 .3812 .4936 .6780
.2218 .2936 .3824 4971 .6839
.2321 .2981 .3827 .4993 .6945
.2360 .3006 .3832 .5055 .8602
.2373 .3028 .3912 .5076 .8624
.2378 .3028 +3919 .5233 .87&7
.2378 .3052 .3934 .5379 .8825
- .2398 .3108 L4024 5455 .8879
.2H1 23139 4066 .5460 L9177
2421 .3139 L4085 .5470 .9263
2429 L3149 L4091 .5564 9456
.2hk9 .3172 4115 .5721 .9632
2456 .3173 L4128 .5803 1.0351
.2504 .3268 146 .5837 1.1202
.2508 .3333 L4158 .5854 1.1390
.2512 . 3347 .4193 5954 1.1928
R = .435
s = 0219

The magnitude of the error can‘be shown in two ways:
First, consider the true probability (not .9986) of R

exceading t

incorrect’




Since log R~ N(uy, o2), it follows that

Pro{R < L) = ¢ (208 =¥

where ¢ (*) 18 the standard:zed normal distribution function.

The 150 observations in Table I came from a ‘log normal
distribution with py = =1 and o = %. Therefore,

(103 t1ncorrect

172

- (-1)
)

Pr{R <ty correct! = ¢

= ¢ {2.176) = .9852,

as compared with .9986. The probability, .9852, is
corroborated by the data. Note that, of the 150 observations,

3 exceed t If the actual probability of R exceeding

incorrect’

tincorrect ¥ere i - .9986 = .0014, it is extremely unlikely

that this event would occur as many as 3 times out of 15C

trials.

Y

Another way of determining the magnitude of error is to

compute the number t. . . such that Pr{R « tt}ue) actually

e

is equal to .9986. Thus, tyoue DUBt satisfy
log t, - (-1), . ‘
¢ ( trug ) = .9986. 21
1/2

Solving [2] yields tepe = € = 1.6487, & number considerably

higher than t;ncorrect‘ - ';' 3




SECTION I1I - THEOREMS

Suppose X is an observable random variable. From the
failure analysis viéwpoint, it might be desirable to eatimate
percentage points and tolerance limits for X. A percentage
point, Ep, is a number such that the probabllity of X
.exceeding ‘p is gqual to l-p. Tolerance limits for X define
an interval [x(1), x(j)]. This interval is such that, at
least 100 8 percen§ of the timg, the probability is l-a that
x(1) < X < x(J), where 1-a is the chosen level of confidence,

and 8 is any arbitrary positive number less than 1.

Let x3, X2, ¢4y x, be a sample of n independent

observations of X; and suppose F(z), the cumulative
distribution function of X, 1is continuous and strictly
increasing over the range of interest. If x(1), x(2), ...,
x(n) denotes the observed sample arranged in ascending order
(that is, x(1) < x(J) for 1 < J), then the four following
theorems hold:

-

THEOREM 1: 1If z is any real number, then Prix(i) < z‘ -
~ () ereanr® fapear
Z » ~F(z)]

r=1

Proof:

For a given observation of X, the event {X < z} has

probability P(z). Let S equal the total number of -vservations




of X less than n equal to z. Then, X has the binomial

distribution with parameter F(g). Thus,
. Pr{s:>1i}-= ; (;‘,) [F(2)17 [1-F(2)1"T,

¢ But, S > i means that there are at least i observations

less than n equal to z. This is equivalent to starting x(i)< z.

THEOREM 2: Ir i and J are chosén before observing the data
such that 1 < 1 <J <n, then [x(1), x(3)] is a
confidence interval, independent of F, for Ep’
the 100 x p perpentage point of the distribution
of X.  Specificzlly, the level of confidence

% L. equals _
CProx(1) < £, < x(P} = i: (’;) pF (1-p)"7F - j;(g) p’ (1-p)"7T
=l R =

Proof:

Since F is continucus and strictly inecreasing in the
range of interest, €p is uniquely defined for a given p

in that range.

Pr (x(1) < €.} = Pr (x(1) < &, x(§) < &)
+ Pr (1) £ 6 x(D) 2 6}
= P: {x(3) < Ep} ; Pr {x(i)}i €§, x(3) 2 ¢}

pr




3 since x(i) < x(J). Therefore,.
Pr {x(1) <,€p} - Pr {x(J) < Ep) = Pr {x(1) < & < x(3)1}.
-Since F 1s continuous,
Pr {x(1) < €5 = Pro(x(3) < g = Pr (x(1) < &) < x(D)).

Hence, from THEOREM 1, it follows that

Pr {x(1) L. < x(3)} -:Ez: (?)[F(zp)” [1-F(ap)]

r=1
e
n r n-=r
DN HETRSRETRE
T=1
n n
=2(‘;) o (1-p)“2‘”2(§)p" (1-p)"T
r=1 re=j

since gp is defined so that F(Ep) =Pp.

.

THEQREM 3:(2) Let f(x) be the probability density function of X
and let phe random variable ;13 be the area under
: b4
£(x) betyeen x(1) and x(3) (1 < 3). Then vij
equals the probability that X lies between x(1)
and:x(J) and the density function of 313 is given by

“h (v

- nl J-1i-1 n-j+1
13) = G007 DT Y4y (1-vy4)

THEOREM 4: The probability that 100 § percent, or more, of

X will be in the tolerance interval [x(1), x(J)]




1 0;,

i

~
(that is, Pr Wij > s}), is given by

n

1-Y (?)s" (1-)7°T .

rsj-1

Proof': .
x(J) !

Let ?’“ =f F(z) dz. Then, Pr &13 > B}A’fh(v')“ dv.
"x(1) ' ~ . A

" But, by THEOREM 3,

- nl -1-1 n-j+1
h(viJ) T G-1-DT (=g Vij (1‘VIJ)

Hence,

X 1 :
> B} = nl .I;A vigi-l (l-vm)n"”1

N
Pr {V

13 G-1-1)1 (a-3+i01

1 - I [(3-1), (n-3+141)],

where IB (km) is the Incomplete Beta function. The quantity
IB [(J-1), (n-3+1+1)] can be obtained from the bindmial ;

distribution by the following reIatioﬁship:(B}

I, [(J-1), (n-j+141)] -2 (?)Br (-5 S
| i R L




Hence,

. n :
Pr {Vy, > 8} = 1) (g)(s)r (1-8)7°T

rej-1
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SECTION III - APPLICATION

For the lunar excursion module to land safely, it is
necessary that certain end conditions not be excessive. One
of these end conditions 1s the vertical component of velocity,
é. Table II gives Qalues of é obtained from 122 independent
lunar landing simu;ations. Statistical tests reject the
hypothesis that thesé values came from a normal or any other,
well known distribution. (See Ref. 4; Kolmogorov-Smirnov
Goodness of Fit Test.) Therefore, in order to estimate
perpentage points and tolerance limits of this unknown
distribﬁtion, it is necessary to use a distribution~free
(non parametric) procedure, It is clear that the range of é
is an interval on the real line; hence, the conditions of

SECTION II are satisfied.

je

ESTIMATION OF £

Suppose it is desired to estimate ¢ _ . By Theorem II,

any interval of the form [é(i), é(J)] is8 a confidence

for ¢ o5 ° However 1 and j should be chosen so that a

reasonable confidence level is attained; that is, it is

advantageous to have

Priz(1) c 6, 2N =1-s
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TABLE II - VALUES OF 2 ARRANGED IN ASCENDING ORDER

k Z(k) k Z(x) k 2(x)
1 .30 4 3.60 81 5.88
2 .78 42 3.72 82 5.94
3 1.02 43 3.72 83 . 6.00
y 1.14 Ly 3.78 84 " 6.06
5 1.20 45 3.84 85 6.06
6 1.32 46 3.90 86 6.12
7 1.38 47 - 3.90 87 - 6.12
8 1.38 48 3.90 88 6.12
9 1.56 49 3.90 89 6.30
10 1.62 50 3.96 90 6.36
11 1.74 51 4,02 91 6.42
12 1.74 52 4,14 92 6.48
13 1.80 53 4,14 93 6.54
14 1.86 54 §.14 94 6.78
15 1.92 55 4,38 95 6.90
16 2,22 56 4,38 96 6.96
17 2.28 57 4,50 97 7.14
18 2.34 58 4,74 98 7.20
19 2.52 59 4,76 99 7.26
20 2.52 60 4,80 100 7.30
{21 2.58 61 4,80 101 7.50
il22 2.64 62 4,86 102 7.56
23 2.64 63 4.98 103 7.74
24 2.70 64 5.04 104 7.74

25 2.70 65 5.16 105 7.78]
26 2.82 66 5.27 106 7.86
27 2.88 67 5.28 107 8.04
28 2.94 68 5.28 108 8.10
29 3.00 69 5.34 109 8.22
30 3.06 70 5.34 110 - 8.82
31 3.06 71 5.40 111 8.88
32 3.30 72 5.46 112 9.12
33 3.50 73 5.52 113 9.12
34 3.42 74 5.52 114 9.12
35 3.42 75 5.64 115 9.48
37 3.48 77 5.70° 117 10.74
38 3.48 78 5.70 118 10.98
39 3.54 79 5.76 119 12.54
4o 3.54 80 5.88 120 16.26
. , 21 16.88

122 | 20.82}
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where o is a small probability. 1In other words, a

is the probability that the true value of ¢ o5 lies

outslde the interval of estimation. For example, if 1
is thosen to be 111, and J to be 120, then x(1i) = 8,88,
x(J) = 16.26, and 1t follows that

122
. 122 ‘
Pr{8.88 < og < 16.26} Z (r ) (.95)F (.05)122-r
r=111
122
-3 ‘},22) (.95)" (.05)"F
r=120

= ,9805-.,0534 = ,9271

Since it is of no concern in this particular problem

if the true value of ¢ o5 is less than Z(1), the interval

in equation [2] may be changed to a one-sided form,

[~ =, é(J)]. In this case, equation [2] reduces to




jw

15

Pr {¢ o5 < 16,26} = 1 - ,0534 = .9466.

MAXIMUM CONFIDENCE LEVEL

Note that as J increases, o decreases until, the
maximum confidence level of l-pn is attained if § = n.
For thls reason, when p 1s very close to 1 and n 1s not

very large, any attempt to estimate Ep results in a very
low confidence level.

A rough estimate of a desirable n for a glven p

may be obtained using the relation that, for n > 100,

1-p" & 1-eM(1-P) | 1p 5t 1 stipulated that the maximum

confidence level should be l-a, then n must be determined

such that 1-¢~P(1-P) # l-a. In other words, let n =

.

(- log a) .
(1-p)

EXAMPLE:

It is desired to find a sample size that could be

used for estimating ¢ 9999 with a maximum confidence of

-99.




SOLUTION:

16

Let n be approximately egual to

- 108' .01) =
.oo%i . = 46050,

TOLERANCE LIMITS

sets

N

Suppose it 1s necessary to determine the following

of tolerance limits for the data given in Table II.

Determine i and § such that:

8. The probability is .90 (that is, l-a = .90), that

b. At least B85% of the time, Z lies between x(1i) and
 x(3) (8 = .85),

Determine 1 and J such that:

a. The probability (l-a) = .93, that at least

b. 90% (B = .90) of the time é lies between x(1)

and i(;).

Determine j such that:

a. The probability is .94, that at least

b. 85% of the time Z will be less than x(J).
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4. Determine 1 and § such thdt:

a. The probability 1s ,999, that at least

b. 99.865% of the time Z will be between x(i) and
x{J).

Although these tolerance limits can be obtained
by a direct application of Thgofem bk, a computer program
has been written providing the necessary information 1n‘
tabular form. The output of this program is presented
in Table III. (The computer program that generates Table
III is available from the Computation and Analysis
Division.)

To construct the set of tolerance limits in example
C. 1., read down the .85 Beta column to 1<a = .90 (or
the number closest to .90). Then read the corresponding
entry in the J-I columns, which is 109, indicating that
the x(1) and x(J) used for the tolerance limits are
such that j-i = 109, Hence,’any of the following sets
of x(i) and x(j) could be used to satisfy the desired
tolerance limits. C.l.: [x(1), x(110]; {x(2), x{(111)];
[x(3), x(112)], ete. 7

Suppose the experimentér desired to use x{S)'and
x(116) he could assume that the probability is .8915
that at least 85% of the time z would 1ie Setﬂaenvl.éa |
and 9.48. e :




TABLE III ~ TOLERANCE LIMITS

18

CONFIDENCE LIMITS (l-a)

N = 122 BETA
J-I .85000 . 90000 .95000 .97500 .99865

122 [1.00000000 |.99999738 |.99808452 |.95444217 |.15711072
121 +99999995 |.99996193 |.98578505 |.81192790
120 .99999939 }.99972358 |.94662098 |.59084808
119 .99999541 |.99866425 |.B86417030 |.36409954
118 .99997454 1.99516255 |.73506989 |.19113110
117 | .99988764 |.98598032 |.57471360

116 | .99958859 |.96608552 |.41013740

115 | .99871404 |.92945379 |.26659726

114 | ,99649551 |.87094480 |.15799781

113 | .99153645 |.78859880

112 | .98164752 |.68520883

111 | .96387916 |.56824239

110 | .93487493 |.44802688

109 | .B9156544 |.33500376

108 | ,83206039 |.23722979

107 | .75645397 |.15901061

106 | .66722728

105 | .56904704

104 .16797915

. 103 | .37035320

1102 | .28162844

1101 | .2055786%

100 | .14396611
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In example C. 2., the set of tolerance limits is read
from the table to be x(1) and x(J) such that j-1 = 115,
In-C. 3., a one-sided case, the x(J) chosen is such that
J = 110. This means that the probability is .93 that
at least 85§ of the time Z will be less than 8.82. Note
that the last set of tolerance limits (example C. 4.)
does not exist for this set of data. That is, there 1is
no 1 and J such that the probability is .$39 that at
least 99.865% of the time Z will be between x(1) and
x(J3). '

SAMPLE SIZE

To find a seﬁ of tolerance limits as described in
example C. 4., a sample size of approximately 8845
obsérvations would be necessary. The following equation
provides an approximation to the number of observations

required for a given # and a given confidence level.(?)

1 L (1l 48
Ned oA oo (dre,, )

. Where:

A 18 the (l-a) percentage point of the X2 distribu-
tion with four degrees of freedom § is the probability
that Z will 11e between x(i) and x(3§). 1-a is




the desired confidence level. (In example C. 4.,

A =18.5 B = .99865, and 1-a = .999).

4 , .
E. POISSON APPROXIMATION TO THE BINOMIAL SUM
M For large n and 8 close to 1, the sum
n
)R L 6 O 3 Lt ‘
r=j-1
can be approximated by
n-(j-1) -x,r
@ pD 7 where A = n(1-8)
- r=0 ) :

F. TESTING FOR NORMALITY

One method of testing the data for normality is to
use the Komogorov-Smirnov test. This test is available

in a computer program from the Computation and Analysis

Division(s).
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