686 research outputs found

    Efficient evaluation of accuracy of molecular quantum dynamics using dephasing representation

    Get PDF
    Ab initio methods for electronic structure of molecules have reached a satisfactory accuracy for calculation of static properties, but remain too expensive for quantum dynamical calculations. We propose an efficient semiclassical method for evaluating the accuracy of a lower level quantum dynamics, as compared to a higher level quantum dynamics, without having to perform any quantum dynamics. The method is based on dephasing representation of quantum fidelity and its feasibility is demonstrated on the photodissociation dynamics of CO2. We suggest how to implement the method in existing molecular dynamics codes and describe a simple test of its applicability.Comment: 5 pages, 2 figure

    Selective amplification of scars in a chaotic optical fiber

    Get PDF
    In this letter we propose an original mechanism to select scar modes through coherent gain amplification in a multimode D-shaped fiber. More precisely, we numerically demonstrate how scar modes can be amplified by positioning a gain region in the vicinity of specific points of a short periodic orbit known to give rise to scar modes

    Ultrahigh harmonics from laser-assisted ion-atom collisions

    Full text link
    We present a theoretical analysis of high-order harmonic generation from ion-atom collisions in the presence of linearly polarized intense laser pulses. Photons with frequencies significantly higher than in standard atomic high-harmonic generation are emitted. These harmonics are due to two different mechanisms: (i) collisional electron capture and subsequent laser-driven transfer of an electron between projectile and target atom; (ii) reflection of a laser-driven electron from the projectile leading to recombination at the parent atom.Comment: 5 pages, 4 figure

    Time-dependent unitary perturbation theory for intense laser driven molecular orientation

    Full text link
    We apply a time-dependent perturbation theory based on unitary transformations combined with averaging techniques, on molecular orientation dynamics by ultrashort pulses. We test the validity and the accuracy of this approach on LiCl described within a rigid-rotor model and find that it is more accurate than other approximations. Furthermore, it is shown that a noticeable orientation can be achieved for experimentally standard short laser pulses of zero time average. In this case, we determine the dynamically relevant parameters by using the perturbative propagator, that is derived from this scheme, and we investigate the temperature effects on the molecular orientation dynamics.Comment: 16 pages, 6 figure

    Approximate Analytic Solution for the Spatiotemporal Evolution of Wave Packets undergoing Arbitrary Dispersion

    Full text link
    We apply expansion methods to obtain an approximate expression in terms of elementary functions for the space and time dependence of wave packets in a dispersive medium. The specific application to pulses in a cold plasma is considered in detail, and the explicit analytic formula that results is provided. When certain general initial conditions are satisfied, these expressions describe the packet evolution quite well. We conclude by employing the method to exhibit aspects of dispersive pulse propagation in a cold plasma, and suggest how predicted and experimental effects may be compared to improve the theoretical description of a medium's dispersive properties.Comment: 17 pages, 4 figures, RevTe

    Classical chaos with Bose-Einstein condensates in tilted optical lattices

    Full text link
    A widely accepted definition of ``quantum chaos'' is ``the behavior of a quantum system whose \emph{classical} \emph{limit is chaotic}''. The dynamics of quantum-chaotic systems is nevertheless very different from that of their classical counterparts. A fundamental reason for that is the linearity of Schr{\"o}dinger equation. In this paper, we study the quantum dynamics of an ultra-cold quantum degenerate gas in a tilted optical lattice and show that it displays features very close to \emph{classical} chaos. We show that its phase space is organized according to the Kolmogorov-Arnold-Moser theorem.Comment: 4 pages, 3 figure

    Multi-filament structures in relativistic self-focusing

    Get PDF
    A simple model is derived to prove the multi-filament structure of relativistic self-focusing with ultra-intense lasers. Exact analytical solutions describing the transverse structure of waveguide channels with electron cavitation, for which both the relativistic and ponderomotive nonlinearities are taken into account, are presented.Comment: 21 pages, 12 figures, submitted to Physical Review

    Optimal use of time dependent probability density data to extract potential energy surfaces

    Get PDF
    A novel algorithm was recently presented to utilize emerging time dependent probability density data to extract molecular potential energy surfaces. This paper builds on the previous work and seeks to enhance the capabilities of the extraction algorithm: An improved method of removing the generally ill-posed nature of the inverse problem is introduced via an extended Tikhonov regularization and methods for choosing the optimal regularization parameters are discussed. Several ways to incorporate multiple data sets are investigated, including the means to optimally combine data from many experiments exploring different portions of the potential. Results are presented on the stability of the inversion procedure, including the optimal combination scheme, under the influence of data noise. The method is applied to the simulated inversion of a double well system.Comment: 34 pages, 5 figures, LaTeX with REVTeX and Graphicx-Package; submitted to PhysRevA; several descriptions and explanations extended in Sec. I

    New, Highly Accurate Propagator for the Linear and Nonlinear Schr\"odinger Equation

    Full text link
    A propagation method for the time dependent Schr\"odinger equation was studied leading to a general scheme of solving ode type equations. Standard space discretization of time-dependent pde's usually results in system of ode's of the form u_t -Gu = s where G is a operator (matrix) and u is a time-dependent solution vector. Highly accurate methods, based on polynomial approximation of a modified exponential evolution operator, had been developed already for this type of problems where G is a linear, time independent matrix and s is a constant vector. In this paper we will describe a new algorithm for the more general case where s is a time-dependent r.h.s vector. An iterative version of the new algorithm can be applied to the general case where G depends on t or u. Numerical results for Schr\"odinger equation with time-dependent potential and to non-linear Schr\"odinger equation will be presented.Comment: 14 page
    • …
    corecore