A propagation method for the time dependent Schr\"odinger equation was
studied leading to a general scheme of solving ode type equations. Standard
space discretization of time-dependent pde's usually results in system of ode's
of the form u_t -Gu = s where G is a operator (matrix) and u is a
time-dependent solution vector. Highly accurate methods, based on polynomial
approximation of a modified exponential evolution operator, had been developed
already for this type of problems where G is a linear, time independent matrix
and s is a constant vector. In this paper we will describe a new algorithm for
the more general case where s is a time-dependent r.h.s vector. An iterative
version of the new algorithm can be applied to the general case where G depends
on t or u. Numerical results for Schr\"odinger equation with time-dependent
potential and to non-linear Schr\"odinger equation will be presented.Comment: 14 page