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ABSTRACT 

 
Identification and spatial registration of laser-induced damage relative to incident fluence profiles is often 
required to characterize the damage properties of laser optics near damage threshold.  Of particular interest 
in inertial confinement laser systems are large aperture beam damage tests (>1cm2) where the number of 
initiated damage sites for φ>14J/cm2 can approach 105-106, requiring automatic microscopy counting to 
locate and register individual damage sites.  However, as was shown for the case of bacteria counting in 
biology decades ago, random overlapping or ‘clumping’ prevents accurate counting of Poisson-distributed 
objects at high densities, and must be accounted for if the underlying statistics are to be understood.  In this 
work we analyze the effect of random clumping on damage initiation density estimates at fluences above 
damage threshold.  The parameter ψ=aρ=ρ/ρ0, where a=1/ρ0 is the mean damage site area and ρ is the 
mean number density, is used to characterize the onset of clumping, and approximations based on a simple 
model are used to derive an expression for clumped damage density vs. fluence and damage site size.  The 
influence of the uncorrected ρ vs. φ curve on damage initiation probability predictions is also discussed. 
 
 
INTRODUCTION 
 
The damage threshold of optics used in inertial confinement fusion (ICF) lasers, where laser fluence can 
average more than 8 J/cm2, is a key parameter used to predict the expected lifetime of the ICF optics [1].   
By exposing numerous spots on an optic with a range of pulse energies from a focused laser beam, such as 
in a so-called S/1 or R/1 test, damage thresholds can be ascertained by analyzing the resulting S-curve.  In 
general, the 1/e2 laser spot size is in the range of microns to ~1mm, which means that a large number of 
sample areas must be taken to obtain reasonable statistics.  Furthermore, some may argue that probing an 
optic with a small beam is not a realistic test of an optic used in large aperture laser systems.  An alternative 
damage test involves a moderate aperture (~2 cm2) beam with sufficient contrast to access fluences above 
and below damage threshold.  Spatial registration of the laser beam footprint and the resulting damage 
allows one to infer a damage density versus fluence, or ρ(φ) vs. φ, curve, where the damage probability of a 
particular area can be found using Poisson statistics.  The ‘ρ(φ) vs. φ‘ damage test method has the ability of 
measuring the mean density of all initiators versus fluence and the probability can be calculated for 
different test areas, and thus can be, in this regard, considered more advantageous in terms of probability 
calculations than small area S/1 testing. 
 
Because of the large number of damage sites created by ~cm sized aperture laser pulses (for example, a 
fused silica surface exposed to a ~20 J/cm2 mean fluence with 15% contrast may create as many as 100,000 
damage initiations), automated microscopy is needed for damage site counting.  This entails –raster-
imaging areas exposed to the laser pulse with appropriate lighting and resolution (usually backlighting and 
NA>0.1), setting a threshold whereby the background can be distinguished from the damaged area, and 
registering the coordinates of each object above an image grey-value threshold.  Through the use of beam 
and sample fiducials, micron-level registration of the fluence to the damage coordinates can (in principle) 
be achieved, yielding the usual exponential or power-law curves for ρ(φ) vs. φ.   However, as the density of 
damage increases, the number of damage sites that overlap, or ‘clump’ within the damaged area, prevents 
accurate counting of individual initiations using automatic scanning techniques.  At such high fluences 
where densities reach this limit, one is no longer measuring the ρ(φ) vs. φ of damage initiations, but rather 
the ρ(φ) vs. φ of damage initiation clumps. 



 
 
Figure 1: (left) An optical micrograph (5x/0.2NA, back-illuminated) showing the spatial distribution of damage sites 
produced by a ~18 J/cm2 portion of a 2-cm diameter, 3ns Gaussian pulse.  (right) Outlines showing the result of 
thresholding the image in (b), which correspond to the individual detections of ‘blobs’ which in several cases is 
associated with clusters/clumps of damage sites, and not individual sites. 
 
 
It is known that objects of finite spatial extent placed at random in space will have a probability of overlap 
based on their size and the spatial extent over which they are distributed.  This is true in all dimensions, and 
several examples can be found in various fields of science.  In one dimension, a segment can be sub-
divided into finite length parts or two or more types, and one may ask what the probability is for any type 
to appear consecutively given the total number of types and sub-divisions.  Such a question is important in 
queuing theory and applicable to computation and networking where ‘bits’ form the segments in the 
queue[2].  In two dimensions, lamina may be placed at random in a plane, such as poker chips on a table, 
and the question of overlap can be similarly investigated.  Many practical examples of 2-D clumping, in 
fact, have been available for decades, ranging from ‘strategic’ aerial bombing during WW II involving 
bombs placed at random over a target area[3], to the study of randomly distributed bacteria colonies in a 
Petri dish[4].  Percolation theory in transport physics can be viewed as an extreme example of clumping in 
2- or 3-D when an electronic path is created by the overlap of randomly-connected conducting particles or 
crystallites[5]. 
 
In this paper we review the theory of ‘random clumping’ and apply a simple model to explain the behavior 
of the measured ρ(φ) vs. φ at high-φ for fused silica surface damage as clumping of damage becomes 
important.  Using a Weibull distribution for damage site initiation at low densities, and a simple Poisson-
based model for clumping at high densities, we construct a functional form of ρ(φ) that can be used to show 
how clumping affects ρ(φ) vs. φ as a function of both the intrinsic ρ and damage site size.  Finally, we show 
as an example how damage expectation predictions are influenced by changes in ρ(φ) caused by clumping, 
and in particular the influence on the study of damage caused by spatial hotspots in a laser beam. 
 
 
OVERLAP OF RANDOMLY PLACED OBJECTS IN TWO DIMENSIONS 
 
In order to estimate the amount of under-counting involved in automated threshold-imaging microscopy 
due to clumping of individual damage sites, we start by describing the probability of observing a clump of 
n sites if the total number and areal density of sites is given by N and ρΝ respectively.  (A more complete 
description of this approximation can be found in Roach [6])  For simplicity, we assume each site is 
circular, and has a diameter δ (which will be argued later as a justifiable assumption).  Under Poisson 
statistics, the probability that a single damage site is not overlapped by any other randomly placed site is 
just the probability that no other site has its center within a diameter distance: 
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It follows that the probability of any site existing within an area πδ2 and overlapping a given site is 1-p0.  
We then ‘build’ an n-membered clump by requiring that, as we search outward from any site to its nearest 
neighbor, the inter-site distance be less than 2δ, and similarly the distance between that site and its nearest 
neighbor be less than 2δ, until we reach the last site which resides at a distance from the next progressive 
nearest neighbor greater than 2δ.  The probability of observing this chain of n sites is can be approximated 
by the probability of n-1 overlapped sites followed by 1 isolated site, or  
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such that the mean density of isolated n-membered clumps given a mean site density ρN is approximately 
given by 
 

.)1( 1
00

n
pp

n
p n

N
n

N

−−
= ρρ      (3) 

The mean density of clumped sites of all sizes is derived by allowing the maximum clump size to go to 
infinity and summing the mean number of clumps of all sizes,  
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where ln(x)=∑(x-1)n/n.  By defining the nominal coverage as ψ=ρN/ρ0, where ρ0=(¼πδ2)-1 is the inverse 
area of each site, the ratio of clump density to individual site density, ε=ρC/ρN, can thus be compactly 
approximated by:  
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We emphasize here that the above treatment is approximate and neglects some details of the overlapping 
statistics. Nonetheless, Eq. 5. has been found to reasonably describe the experimentally encountered under-
counting problem [6] which is caused from the departure between clump density and site density.  A more 
rigorous treatment, for example, can be based on Monte Carlo techniques[7] which can better address 
details in both variable overlap and voids, particularly important for arbitrarily shaped objects. 
 
The behavior of Eq. 5 is shown in Fig. 2, where we plot the clumping ratio and the normalized clumping 
density (clumping coverage) as a function of nominal coverage.  As is shown, the ratio of clumps to 
individual sites linearly departs from unity at low coverage, and approaches zero as the coverage increases.  
It is of interest to note that ε≠0 when ψ=1 (ε=0.075) may be counter-intuitive, since this corresponds to a 
site density equal to the inverse size of the sites, but in face illustrates the random behavior of clumping: 
even at this exceedingly high density, a single huge clump is still not likely to occur.  However, plotted 
along the right axis of Fig. 2 is the normalized clump density, which increases linearly at first and clumps 
are populated on the surface, but exhibits a characteristic peak at ψp=0.4, which corresponds to a maximum 
clumping coverage of 0.17.  This peak at ψp=0.4 can be associated with the well-known 2D percolation 
threshold observed in condensed matter physics problems as well as in the study and containment of forest 
fires.  For a nominal coverage above this threshold, the damage sites tend more and more towards one 
single clump.   
 
Because ψp is uniquely determined by density (a function of fluence) and damage site size (typically a 
function of pulse length), we can use it as a rough limit, beyond which automated counting of sites is 
severely compromised by clumping.  Still, even at this limit, the error associated with using clump density 
to estimate actual site density is greater than 50% (defined as 1-ε).   
 



 
 
Figure 2: Plot of Eq. 5 (left axis), showing the continual decrease from unity towards zero of the ratio of clumps to 
individual sites, or equivalently, the compliment of the fractional error associated with using clump density to estimate 
individual site density.  The right axis shows the clumping coverage, or normalized clump density, exhibiting a peak 
that corresponds to the percolation threshold of connected damage sites. 
 
 
Using available λ=351 (3ω) nm data on fused silica exit surface damage site size versus Gaussian pulse 
length[8], which suggests δ~cτ0.7 where c=7μm/ns0.7, and a linear approximation for ε(ψ) at small ψ, we 
can estimate the associated counting error due to clumping as: 
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This expression can be used as a reasonable approximation of the error due to undercounting up to about 
35%.  For example, the counting error would be about 20% for a 10ns pulse at a density of ~3x103 cm-2, but 
would drop to less than 1% for 1ns pulses at the same density.   
 
In terms of damage sites of unequal size, Armitage [4] first described the effect of a size distribution f(δ) on 
clumping, starting again with the Poisson probability of overlap between any two particles, and using 
instead the exact probability distribution function for randomly placed particles in a finite plane and 
approximating ε(ψ) for small clusters.  Since the number of sites per unit area with diameters between δ' 
and δ'+dδ' (0<δ'<∞) is given by ρNf(δ')dδ', the probability that a site of diameter δ does not overlap any 
sites in this differential range is now given by (see Eq. 1): 
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By integrating over all sizes and ignoring moments of higher order than 2, it can be shown that ε can be 
expanded as 
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where σ is the width of the size distribution.  And by comparison with the first two terms of an expansion 
in ψ of Eq.5, we can approximate an effective ψ' as ψ→ψ'=ρN/ρ'0, where ρ'0=[⅛π(δ2+2σ2)]-1 This 
approximation is valid as long as the damage site size distribution does not yield significant contributions 
from high-order moments, and in particular is a good approximation if δ2>>2σ2 (see Fig. 3).  Indeed, for the 
3ns Gaussian data, 400 unclumped site diameters were determined to have an average size of 16μm and a 



variance of 21 μm2, thus justifying the approximation (see Fig. 3b).  In the following treatment, we will 
assume an effective mean diameter equal to ~√δ2+2σ2. 
 
 

 
Figure 3: (a) Scanning Electron Microscope image of a single 3ns Gaussian-initiated damage site, showing the typical 
circular nature of the damage, and (b) an average-shifted histogram (ASH) plot of diameters for 400 individual damage 
sites (clumped sites were not counted).  
 
 
PROBABILITY OF DAMAGE VERSUS FLUENCE 
 
With the overlap statistics in hand, we now seek to modify the fluence dependence on (unclumped) damage 
sites as a function of fluence.  Although several models exist to describe the probability distribution 
function[9,10], for simplicity and general agreement with our data, we choose the Weibull power-law 
distribution function, but in principle, other distribution functions could be applied here.  It will be noted 
that in general, the density of observed damage sites increases quite rapidly with fluence, and can involve 
different so-called precursors that ‘turn on’ at different fluences (see for example Ref.10)  We assume for 
simplicity that there exists a single precursor type/threshold and that, up to at least the onset of clumping, 
we do not encounter any saturation effects due to the unavailability of precursors beyond some density.   
 
The Weibull distribution for damage site density as a function of fluence can be written as, 
 

k
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where a is a scaling constant, and the power k is typically in the range 5-12 [9] depending on the material.  
The exact physics leading to this somewhat empirical (statistical) description to the density function, to our 
knowledge, is yet to be specified.  If the density of individual damage sites initiated on a surface as a 
function of fluence is given by Eq. 9, we can now express the density of clumps as a function of fluence 
that an automated microscope would observe as a function of fluence and mean site diameter: 
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Or explicitly in terms of the Weibull parameters,  
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We will refer to this function as the Weibull-Roach distribution, which combines actual physical 
origination of damage and observed effects that include clumping.  One interesting thing to note is that, if 
the Weibull fit parameters are consistent above and below the percolation threshold, a fit can be applied 



when error due to clumping is small, and then extended out to higher densities using only a single fitting 
parameter: δ.  Alternatively, if the distribution of sizes is explicitly known (which may be difficult to 
determine when clumping is severe), one may, in principle, recover the true distribution of the damage 
precursors, even beyond the limit imposed by direct counting.    
 
 
COMPARISON OF THEORY WITH ρ(φ) MEASUREMENTS 
 
We now turn to the analysis of measured density estimates of damage initiations on fused silica exit surface 
following a single pulse of 351nm light.  The details of the automated microscopy, thresholding algorithms 
and mapping to fluence images are described elsewhere[11].  3 and 10ns single pulses averaging ~22 and 
~50 J/cm2 respectively were weakly focused (~f/20) onto two identical precision cleaned Corning 7980 
fused silica surfaces.  The 10ns beam spot was ~2cm diameter, while the 3ns beam spot was ~1cm 
diameter.  Immediately after being shot in a 2.5 torr N2 environment, samples were transferred in Class 100 
conditions to the microscope for inspection.  Roughly 60,000 damage ‘blobs’ were detected by automated 
microscopy for the 10ns pulse, while the number was about 10,000 for the 3ns sample.   
 

 
 
Figure 4: Observed density of damage sites versus fluence, ρ(φ) vs. φ, for 351nm, 3ns and 10ns Gaussian pulses 
(circles), compared with a Weibull power-law fit for ψ<0.1 (solid line), and the Weibull-Roach fit using the Weibull-
only fit parameters, and fitting the single parameter δ (dash-dot line).        
 
Figure 4 shows the results of the automated measurement, along with fits using Eqs. 9 and 11.  As is 
evident in the 1-J/cm2 binned data, a ‘roll-over’ or peak in density is observed for both 10 and 3ns, 
indicative of clumping.  Also evident is the fact that, as described earlier, the onset of clumping occurs at 
lower densities (~2x105 cm-2) in the 10ns case than in the 3ns case (~5x105 cm-2), owing to the fact that the 
10ns damage site diameters are roughly twice as large those of the 3ns sample.  Shown with the data of Fig. 
4 are results of the Weibull-only fit (solid lines), for 0<ψ<0.1 where the error due to clumping has been 
determined to be less than 10% over that entire range, and the full Weibull-Roach fit (dash-dot line) over 
the entire fluence range. The Weibull-Roach function was applied, using as fixed inputs the ψ<0.1 fit 
parameters (a, k), and as a variable input the damage site diameter, δ, resulting in an excellent fit to the 
data.  In both cases, the extracted diameter (δ, fit) was in good agreement with that found directly by 
averaging over a number of unclumped sites (δ, meas.).  Table I shows the results of the numerical fits.   
 
 
Table I: Results of Weibull and Weibull-Roach fits of 3 and 10ns ρ(φ) data. 
 a (cm-2) k δ, fit (μm) δ, meas. (μm) ψp ε(ψp) 
3ns 3.5x10-6 7.1 ~19 16 0.42 0.38 
10ns 3.6x10-6 5.6 ~30 35 0.48 0.33 
 
 



Because of the strong power dependence of the Weibull function, the peak associated with the percolation 
threshold at ψp=0.4 has shifted slightly to higher values in the W-R fit:  ψp=0.42 and 0.48 for 3 and 10ns 
respectively.  However, it should also be noted that the data appear slightly less steep near ψp as compared 
with the W-R fit. 
 
One aspect that is important to emphasize about the experiment is that, along with errors due to the 
microscope thresholding algorithms inability to distinguish individual damage sites at high density, there is 
also a contribution to the error from inexact fluence registration to the damage site locations.  Though not 
discussed at length here, distortions in the large beam image must be carefully measured and compensated 
in order to avoid such errors, as well as an effective method for sample-beam alignment.  Errors from this 
effect could well contribute to the slight discrepancy of the data and the model. 
 
 
INFLUENCE OF CLUMPING ERROR ON DAMAGE PROBABILITY 
CALCULATIONS 
 
Although most Inertial Confinement Fusion lasers are not expected to operate at fluences and associated 
densities for typical fused silica where ρ(φ) measurements are complicated by clumping, such high fluence 
measurements are nonetheless useful in predicting damage when a so-called hotspot occurs.  That is, if a 
coating flaw or other disturbance to the beam introduces sufficient phase modulation, and an optic resides 
near a focal point of this aberration, fluences can be as high as 30-40 J/cm2.  Figure 5 shows the 
intensification pattern caused from a coating flaw that was later removed from a conversion crystal 
upstream from a fused silica focusing element in a large aperture laser assembly.  Care must be taken to 
identify such defects before the laser is fired, in order to mitigate their potential hazard or exchange the 
optic altogether.  Thus, along with characterizing the phase perturbation a defect introduces to the beam 
and the resulting fluence levels at a particular optic, the damage probability at sometimes relatively high 
fluences must be known.   
 

 
Figure 5: Intensification pattern projected onto an optical surface typical of an upstream coating flaw.  The calculated 
image on the left was created by propagating 3ω light through a phase object several centimeters away.  The lineout ro 
the right shows the peak intensity reaching as high as 40 J/cm2.        
 
 
Because the damage site initiation is generally believed to follow Poisson statistics, as discussed above, the 
probability p(φ) of finding any damage in an area A, given a mean density ρ(φ) of initiating sites is given 
by 
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Hence, for large areas (e.g. entire ICF laser optical surfaces), only a modest density and therefore modest 
fluence will lead to finite probabilities of damage.  It follows then that for very small areas, the fluence 
must be quite high for damage to be probable, simply owing the Poisson nature of the initiators.  It is in this 



regime precisely that undercounting errors in a measured ρ(φ) used in subsequent damage calculations will 
cause an underestimate of damage probability.   
 

 
 
Figure 6: Effect of clumping on damage probability calculations based on measured ρ(φ).  The roll-over in measured 
ρ(φ) at high fluence due to clumping (See Figure 4) causes an abnormal and non-physical prediction of damage 
probability for small beam sizes.        
 
      
Figure 6 shows the effect of clumping on calculated probability curves using Eq. 12 as a function of fluence 
for a model ‘hotspot’ with a flat top profile of progressively decreasing diameter, from 1 cm down to 30 
microns.  If one assumes a single defect ensemble with a Weibull distribution function, the probability 
curves shift progressively to higher fluences as d is decreased, but always approaches 1 at some high 
fluence.  However, when a Weibull-Roach distribution function is applied to simulate clumping error in the 
measured ρ(φ), a quite different behavior is observed at the smaller hotspot diameters.  Just as there is a 
peak in the ρ(φ) curve due to undercounting, this peak also arises for the same reason in the p(φ) plots.  
Such an underestimate caused by density measurement errors could lead to incorrect characterization of 
certain hotspots, and subsequent unintended damage to optics. 
   

 
 
Summary 
 
While automated microscopy of large numbers of damage initiations continues to prove useful in 
characterizing laser-induced damage in optics, it is plagued by the problem of distinguishing individual 
damage initiations as the density grows large.  Because of the subsequent under-counting associated with 
clumping, the ρ(φ) curves for fused silica damage at 3 and 10 ns show a characteristic and inevitable peak, 
which can be associated with the 2D percolation threshold of damage sites across the surface.  The effect of 
random clumping on density estimates of fused silica exit surface damage can be theoretically described by  
combining Weibull statistics for damage density versus fluence and a simple model for clumping of 
randomly placed objects as function of density.  Using this model, damage site sizes could be extracted, 
further validating this approach, and key parameters associated with the clumping effect evaluated.  A 
rough estimate of the error versus pulse length and density for exit surface fused silica damage at 3ω was 
derived, and can be used to quantify the undercounting error at any point along the ρ(φ) curve, and 
establish bounds to the data validity.  Using a Weibull-Roach model for clumping, the effect of 
undercounting on damage probability estimates was then explored, where it was shown that, for small area 
‘hot spots’ in a beam on the order of 30-100 μm, and fluences near 40 J/cm2, undercounting of ρ(φ) can 
lead to an underestimate of damage probability. 
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