207 research outputs found

    Aortic Coarctation: Recent Developments in Experimental and Computational Methods to Assess Treatments for this Simple Condition

    Get PDF
    Coarctation of the aorta (CoA) is often considered a relatively simple disease, but long-term outcomes suggest otherwise as life expectancies are decades less than in the average population and substantial morbidity often exists. What follows is an expanded version of collective work conducted by the authors\u27 and numerous collaborators that was presented at the 1st International Conference on Computational Simulation in Congenital Heart Disease pertaining to recent advances for CoA. The work begins by focusing on what is known about blood flow, pressure and indices of wall shear stress (WSS) in patients with normal vascular anatomy from both clinical imaging and the use of computational fluid dynamics (CFD) techniques. Hemodynamic alterations observed in CFD studies from untreated CoA patients and those undergoing surgical or interventional treatment are subsequently discussed. The impact of surgical approach, stent design and valve morphology are also presented for these patient populations. Finally, recent work from a representative experimental animal model of CoA that may offer insight into proposed mechanisms of long-term morbidity in CoA is presented

    Quantification of Local Hemodynamic Alterations Caused by Virtual Implantation of Three Commercially Available Stents for the Treatment of Aortic Coarctation

    Get PDF
    Patients with coarctation of the aorta (CoA) are prone to morbidity including atherosclerotic plaque that has been shown to correlate with altered wall shear stress (WSS) in the descending thoracic aorta (dAo). We created the first patient-specific computational fluid dynamics (CFD) model of a CoA patient treated by Palmaz stenting to date, and compared resulting WSS distributions to those from virtual implantation of Genesis XD and modified NuMED CP stents, also commonly used for CoA. CFD models were created from magnetic resonance imaging, fluoroscopy and blood pressure data. Simulations incorporated vessel deformation, downstream vascular resistance and compliance to match measured data and generate blood flow velocity and time-averaged WSS (TAWSS) results. TAWSS was quantified longitudinally and circumferentially in the stented region and dAo. While modest differences were seen in the distal portion of the stented region, marked differences were observed downstream along the posterior dAo and depended on stent type. The Genesis XD model had the least area of TAWSS values exceeding the threshold for platelet aggregation in vitro, followed by the Palmaz and NuMED CP stents. Alterations in local blood flow patterns and WSS imparted on the dAo appear to depend on the type of stent implanted for CoA. Following confirmation in larger studies, these findings may aid pediatric interventional cardiologists in selecting the most appropriate stent for each patient, and ultimately reduce long-term morbidity following treatment for CoA by stenting

    Return to Play Following Shoulder Stabilization: A Systematic Review and Meta-analysis.

    Get PDF
    BackgroundAnterior shoulder instability can be a disabling condition for the young athlete; however, the best surgical treatment remains controversial. Traditionally, anterior shoulder instability was treated with open stabilization. More recently, arthroscopic repair of the Bankart injury with suture anchor fixation has become an accepted technique.HypothesisNo systematic reviews have compared the rate of return to play following arthroscopic Bankart repair with suture anchor fixation with the Bristow-Latarjet procedure and open stabilization. We hypothesized that the rate of return to play will be similar regardless of surgical technique.Study designSystematic review; Level of evidence, 4.MethodsWe performed a systematic review and meta-analysis focused on return to play following shoulder stabilization. Inclusion criteria included studies in English that reported on rate of return to play and clinical outcomes following primary arthroscopic Bankart repair with suture anchors, the Latarjet procedure, or open stabilization. Statistical analyses included Student t tests and analyses of variance.ResultsSixteen papers reporting on 1036 patients were included. A total of 545 patients underwent arthroscopic Bankart repair with suture anchors, 353 with the Latarjet procedure, and 138 with open repair. No significant difference was found in patient demographic data among the studies. Patients returned to sport at the same level of play (preinjury level) more consistently following arthroscopic Bankart repair (71%) or the Latarjet procedure (73%) than open stabilization (66%) (P < .05). Return to play at any level and postoperative Rowe scores were not significantly different among studies. Recurrent dislocation was significantly less following the Latarjet procedure (3.5%) than after arthroscopic Bankart repair (6.6%) or open stabilization (6.7%) (P < .05).ConclusionThis systematic review demonstrates a greater rate of return to play at the preinjury level following arthroscopic Bankart repair and the Latarjet procedure than open stabilization. Despite this difference, >65% of all treated athletes returned to sport at their preinjury levels, with other outcome measures being similar among the treatment groups. Therefore, arthroscopic Bankart repair, the Latarjet procedure, and open stabilization remain good surgical options in the treatment of the athlete with anterior shoulder instability

    A Rapid and Computationally Inexpensive Method to Virtually Implant Current and Next-Generation Stents into Subject-Specific Computational Fluid Dynamics Models

    Get PDF
    Computational modeling is often used to quantify hemodynamic alterations induced by stenting, but frequently uses simplified device or vascular representations. Based on a series of Boolean operations, we developed an efficient and robust method for assessing the influence of current and next-generation stents on local hemodynamics and vascular biomechanics quantified by computational fluid dynamics. Stent designs were parameterized to allow easy control over design features including the number, width and circumferential or longitudinal spacing of struts, as well as the implantation diameter and overall length. The approach allowed stents to be automatically regenerated for rapid analysis of the contribution of design features to resulting hemodynamic alterations. The applicability of the method was demonstrated with patient-specific models of a stented coronary artery bifurcation and basilar trunk aneurysm constructed from medical imaging data. In the coronary bifurcation, we analyzed the hemodynamic difference between closed-cell and open-cell stent geometries. We investigated the impact of decreased strut size in stents with a constant porosity for increasing flow stasis within the stented basilar aneurysm model. These examples demonstrate the current method can be used to investigate differences in stent performance in complex vascular beds for a variety of stenting procedures and clinical scenarios

    Comparing Entry-Level Skill Depths Across Information Systems Job Types: Perceptions of IS Faculty

    Get PDF
    This paper compares and contrasts various information systems (IS) job types based on IS faculty perceptions of the skills that comprise each job type. A total of 148 IS academics took part in a skills survey as part of efforts to update of the IS\u2797 curriculum model (Davis, et al, 1997; Cougar, et al, 1995). IS academics perceive themselves are preparing students for four predominant jobs, the most prevalent one being information systems analyst. The results indicate that individual and team/interpersonal skills are perceived as needing the most depth for each of four job types studied; IS analysts and database analysts are the predominant job specializations perceived among IS faculty; and the network administrator and application developer roles have the most potential as sub-specializations. Future studies must validate these findings against industry perceptions of job types and their skill requirements

    Metamodels to Bridge the Gap Between Modeling and Decision Support

    Get PDF
    Insights from process-based models are a mainstay of many groundwater investigations; however, long runtimes often preclude their use in the decision-making process. Screening-level predictions are often needed in areas lacking time or funding for rigorous process-based modeling. The U.S. Geological Survey (USGS) Groundwater Resources and National Water Quality Assessment Programs are addressing these issues by evaluating the “metamodel” to bridge these gaps. A metamodel is a statistical model founded on a computationally expensive model. Although faster, the question remains: Can a statistical model provide similar insights to a numerical model with faster results

    Computational Simulations for Aortic Coarctation: Representative Results From a Sampling of Patients

    Get PDF
    Treatments for coarctation of the aorta (CoA) can alleviate blood pressure (BP) gradients(D), but long-term morbidity still exists that can be explained by altered indices of hemodynamics and biomechanics. We introduce a technique to increase our understanding of these indices for CoA under resting and nonresting conditions, quantify their contribution to morbidity, and evaluate treatment options. Patient-specific computational fluid dynamics (CFD) models were created from imaging and BP data for one normal and four CoA patients (moderate native CoA: D12 mmHg, severe native CoA: D25 mmHg and postoperative end-to-end and end-to-side patients: D0 mmHg). Simulations incorporated vessel deformation, downstream vascular resistance and compliance. Indices including cyclic strain, time-averaged wall shear stress (TAWSS), and oscillatory shear index (OSI) were quantified. Simulations replicated resting BP and blood flow data. BP during simulated exercise for the normal patient matched reported values. Greatest exercise-induced increases in systolic BP and mean and peak DBP occurred for the moderate native CoA patient (SBP: 115 to 154 mmHg; mean and peak DBP: 31 and 73 mmHg). Cyclic strain was elevated proximal to the coarctation for native CoA patients, but reduced throughout the aorta after treatment. A greater percentage of vessels was exposed to subnormal TAWSS or elevated OSI for CoA patients. Local patterns of these indices reported to correlate with atherosclerosis in normal patients were accentuated by CoA. These results apply CFD to a range of CoA patients for the first time and provide the foundation for future progress in this area

    Computational simulations demonstrate altered wall shear stress in aortic coarctation patients previously treated by resection with end-to-end anastomosis

    Get PDF
    Background.  Atherosclerotic plaque in the descending thoracic aorta (dAo) is related to altered wall shear stress (WSS) for normal patients. Resection with end-to-end anastomosis (RWEA) is the gold standard for coarctation of the aorta (CoA) repair, but may lead to altered WSS indices that contribute to morbidity. Methods.  Computational fluid dynamics (CFD) models were created from imaging and blood pressure data for control subjects and age- and gender-matched CoA patients treated by RWEA (four males, two females, 15 ± 8 years). CFD analysis incorporated downstream vascular resistance and compliance to generate blood flow velocity, time-averaged WSS (TAWSS), and oscillatory shear index (OSI) results. These indices were quantified longitudinally and circumferentially in the dAo, and several visualization methods were used to highlight regions of potential hemodynamic susceptibility. Results.  The total dAo area exposed to subnormal TAWSS and OSI was similar between groups, but several statistically significant local differences were revealed. Control subjects experienced left-handed rotating patterns of TAWSS and OSI down the dAo. TAWSS was elevated in CoA patients near the site of residual narrowings and OSI was elevated distally, particularly along the left dAo wall. Differences in WSS indices between groups were negligible more than 5 dAo diameters distal to the aortic arch. Conclusions.  Localized differences in WSS indices within the dAo of CoA patients treated by RWEA suggest that plaque may form in unique locations influenced by the surgical repair. These regions can be visualized in familiar and intuitive ways allowing clinicians to track their contribution to morbidity in longitudinal studies

    Binding site matching in rational drug design: Algorithms and applications

    Get PDF
    © 2018 The Author(s) 2018. Published by Oxford University Press. All rights reserved. Interactions between proteins and small molecules are critical for biological functions. These interactions often occur in small cavities within protein structures, known as ligand-binding pockets. Understanding the physicochemical qualities of binding pockets is essential to improve not only our basic knowledge of biological systems, but also drug development procedures. In order to quantify similarities among pockets in terms of their geometries and chemical properties, either bound ligands can be compared to one another or binding sites can be matched directly. Both perspectives routinely take advantage of computational methods including various techniques to represent and compare small molecules as well as local protein structures. In this review, we survey 12 tools widely used to match pockets. These methods are divided into five categories based on the algorithm implemented to construct binding-site alignments. In addition to the comprehensive analysis of their algorithms, test sets and the performance of each method are described. We also discuss general pharmacological applications of computational pocket matching in drug repurposing, polypharmacology and side effects. Reflecting on the importance of these techniques in drug discovery, in the end, we elaborate on the development of more accurate meta-predictors, the incorporation of protein flexibility and the integration of powerful artificial intelligence technologies such as deep learning
    • …
    corecore