42 research outputs found

    Norrin stimulates cell proliferation in the superficial retinal vascular plexus and is pivotal for the recruitment of mural cells

    Get PDF
    Mutations in Norrin, the ligand of a receptor complex consisting of FZD4, LRP5 and TSPAN12, cause severe developmental blood vessel defects in the retina and progressive loss of the vascular system in the inner ear, which lead to congenital blindness and progressive hearing loss, respectively. We now examined molecular pathways involved in developmental retinal angiogenesis in a mouse model for Norrie disease. Comparison of morphometric parameters of the superficial retinal vascular plexus (SRVP), including the number of filopodia, vascular density and number of branch points together with inhibition of Notch signaling by using DAPT, suggest no direct link between Norrin and Notch signaling during formation of the SRVP. We noticed extensive vessel crossing within the SRVP, which might be a loss of Wnt- and MAP kinase-characteristic feature. In addition, endomucin was identified as a marker for central filopodia, which were aligned in a thorn-like fashion at P9 in Norrin knockout (Ndpy/−) mice. We also observed elevated mural cell coverage in the SRVP of Ndpy/− mice and explain it by an altered expression of PDGFβ and its receptor (PDGFRβ). In vivo cell proliferation assays revealed a reduced proliferation rate of isolectin B4-positive cells in the SRVP from Ndpy/− mice at postnatal day 6 and a decreased mitogenic activity of mutant compared with the wild-type Norrin. Our results suggest that the delayed outgrowth of the SRVP and decreased angiogenic sprouting in Ndpy/− mice are direct effects of the reduced proliferation of endothelial cells from the SRV

    Functional Characterization of an In-Frame Deletion in the Basic Domain of the Retinal Transcription Factor ATOH7

    Full text link
    Basic helix-loop-helix (bHLH) transcription factors are evolutionarily conserved and structurally similar proteins important in development. The temporospatial expression of atonal bHLH transcription factor 7 (ATOH7) directs the differentiation of retinal ganglion cells and mutations in the human gene lead to vitreoretinal and/or optic nerve abnormalities. Characterization of pathogenic ATOH7 mutations is needed to understand the functions of the conserved bHLH motif. The published ATOH7 in-frame deletion p.(Arg41_Arg48del) removes eight highly conserved amino acids in the basic domain. We functionally characterized the mutant protein by expressing V5-tagged ATOH7 constructs in human embryonic kidney 293T (HEK293T) cells for subsequent protein analyses, including Western blot, cycloheximide chase assays, Förster resonance energy transfer fluorescence lifetime imaging, enzyme-linked immunosorbent assays and dual-luciferase assays. Our results indicate that the in-frame deletion in the basic domain causes mislocalization of the protein, which can be rescued by a putative dimerization partner transcription factor 3 isoform E47 (E47), suggesting synergistic nuclear import. Furthermore, we observed (i) increased proteasomal degradation of the mutant protein, (ii) reduced protein heterodimerization, (iii) decreased DNA-binding and transcriptional activation of a reporter gene, as well as (iv) inhibited E47 activity. Altogether our observations suggest that the DNA-binding basic domain of ATOH7 has additional roles in regulating the nuclear import, dimerization, and protein stability

    Novel mutations in CACNA1F and NYX in Dutch families with X-linked congenital stationary night blindness

    Full text link
    PURPOSE: To describe the clinical features and genetic analysis of eight X-linked congenital stationary night blindness (XLCSNB) Dutch patients. METHODS: Electroretinogram (ERG) measurements were assessed in Dutch patients. Molecular genetic testing by denaturing high performance liquid chromatography (DHPLC), single stranded conformation polymorphism (SSCP) analysis, and direct sequencing of the CACNA1F and NYX genes were performed in the patients possessing a negative Schubert Bornschein ERG. RESULTS: Molecular genetic testing of CACNA1F and NYX revealed three novel and two known CACNA1F sequence variants as well as two novel sequence alterations in the NYX gene. While one of the CACNA1F sequence variants (5756G>A, R1919H) has been previously described as a common polymorphism in Japanese families, we did not found this transition in 100 European control alleles. CONCLUSIONS: In a pool of eight diagnosed XLCSNB patients, five showed a sequence variation in the CACNA1F and two in the NYX gene. In only one of the eight patients no sequence alteration could be detected. This might be explained by a mutation in other, as yet unidentified coding or regulatory sequences of NYX or CACNA1F or additional genes

    Functional Analysis of a Novel, Non-Canonical RPGR Splice Variant Causing X-Linked Retinitis Pigmentosa

    Full text link
    X-linked retinitis pigmentosa (XLRP) caused by mutations in the RPGR gene is one of the most severe forms of RP due to its early onset and intractable progression. Most cases have been associated with genetic variants within the purine-rich exon ORF15 region of this gene. RPGR retinal gene therapy is currently being investigated in several clinical trials. Therefore, it is crucial to report and functionally characterize (all novel) potentially pathogenic DNA sequence variants. Whole-exome sequencing (WES) was performed for the index patient. The splicing effects of a non-canonical splice variant were tested on cDNA from whole blood and a minigene assay. WES revealed a rare, non-canonical splice site variant predicted to disrupt the wildtype splice acceptor and create a novel acceptor site 8 nucleotides upstream of RPGR exon 12. Reverse-transcription PCR analyses confirmed the disruption of the correct splicing pattern, leading to the insertion of eight additional nucleotides in the variant transcript. Transcript analyses with minigene assays and cDNA from peripheral blood are useful tools for the characterization of splicing defects due to variants in the RPGR and may increase the diagnostic yield in RP. The functional analysis of non-canonical splice variants is required to classify those variants as pathogenic according to the ACMG’s criteria

    Integrin-linked kinase controls retinal angiogenesis and is linked to wnt signaling and exudative vitreoretinopathy

    Get PDF
    Familial exudative vitreoretinopathy (FEVR) is a human disease characterized by defective retinal angiogenesis and associated complications that can result in vision loss. Defective Wnt/β-catenin signaling is an established cause of FEVR, whereas other molecular alterations contributing to the disease remain insufficiently understood. Here, we show that integrin-linked kinase (ILK), a mediator of cell-matrix interactions, is indispensable for retinal angiogenesis. Inactivation of the murine Ilk gene in postnatal endothelial cells results in sprouting defects, reduced endothelial proliferation and disruption of the blood-retina barrier, resembling phenotypes seen in established mouse models of FEVR. Retinal vascularization defects are phenocopied by inducible inactivation of the gene for α-parvin (Parva), an interactor of ILK. Screening genomic DNA samples from exudative vitreoretinopathy patients identifies three distinct mutations in human ILK, which compromise the function of the gene product in vitro. Together, our data suggest that defective cell-matrix interactions are linked to Wnt signaling and FEVR

    Identification of novel mutations in X-linked retinitis pigmentosa families and implications for diagnostic testing

    Get PDF
    Contains fulltext : 69886.pdf (publisher's version ) (Open Access)PURPOSE: The goal of this study was to identify mutations in X-chromosomal genes associated with retinitis pigmentosa (RP) in patients from Germany, The Netherlands, Denmark, and Switzerland. METHODS: In addition to all coding exons of RP2, exons 1 through 15, 9a, ORF15, 15a and 15b of RPGR were screened for mutations. PCR products were amplified from genomic DNA extracted from blood samples and analyzed by direct sequencing. In one family with apparently dominant inheritance of RP, linkage analysis identified an interval on the X chromosome containing RPGR, and mutation screening revealed a pathogenic variant in this gene. Patients of this family were examined clinically and by X-inactivation studies. RESULTS: This study included 141 RP families with possible X-chromosomal inheritance. In total, we identified 46 families with pathogenic sequence alterations in RPGR and RP2, of which 17 mutations have not been described previously. Two of the novel mutations represent the most 3'-terminal pathogenic sequence variants in RPGR and RP2 reported to date. In exon ORF15 of RPGR, we found eight novel and 14 known mutations. All lead to a disruption of open reading frame. Of the families with suggested X-chromosomal inheritance, 35% showed mutations in ORF15. In addition, we found five novel mutations in other exons of RPGR and four in RP2. Deletions in ORF15 of RPGR were identified in three families in which female carriers showed variable manifestation of the phenotype. Furthermore, an ORF15 mutation was found in an RP patient who additionally carries a 6.4 kbp deletion downstream of the coding region of exon ORF15. We did not identify mutations in 39 sporadic male cases from Switzerland. CONCLUSIONS: RPGR mutations were confirmed to be the most frequent cause of RP in families with an X-chromosomal inheritance pattern. We propose a screening strategy to provide molecular diagnostics in these families
    corecore