113 research outputs found

    Gap junction reduction in cardiomyocytes following transforming growth factor- beta treatment and Trypanosoma cruzi infection

    Get PDF
    Gap junction connexin-43 (Cx43) molecules are responsible for electrical impulse conduction in the heart and are affected by transforming growth factor-beta (TGF-beta). This cytokine increases during Trypanosoma cruzi infection, modulating fibrosis and the parasite cell cycle. We studied Cx43 expression in cardiomyocytes exposed or not to TGF-beta T. cruzi, or SB-431542, an inhibitor of TGF-beta receptor type I (ALK-5). Cx43 expression was also examined in hearts with dilated cardiopathy from chronic Chagas disease patients, in which TGF-beta signalling had been shown previously to be highly activated. We demonstrated that TGF-beta treatment induced disorganised gap junctions in non-infected cardiomyocytes, leading to a punctate, diffuse and non-uniform Cx43 staining. A similar pattern was detected in T. cruzi-infected cardiomyocytes concomitant with high TGF-beta secretion. Both results were reversed if the cells were incubated with SB-431542. Similar tests were performed using human chronic chagasic patients and we confirmed a down-regulation of Cx43 expression, an altered distribution of plaques in the heart and a significant reduction in the number and length of Cx43 plaques, which correlated negatively with cardiomegaly. We conclude that elevated TGF-beta levels during T. cruzi infection promote heart fibrosis and disorganise gap junctions, possibly contributing to abnormal impulse conduction and arrhythmia that characterise severe cardiopathy in Chagas disease

    Transient reduction of tinnitus intensity is marked by concomitant reductions of delta band power

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tinnitus is an auditory phantom phenomenon characterized by the sensation of sounds without objectively identifiable sound sources. To date, its causes are not well understood. Previous research found altered patterns of spontaneous brain activity in chronic tinnitus sufferers compared to healthy controls, yet it is unknown whether these abnormal oscillatory patterns are causally related to the tinnitus sensation. Partial support for this notion comes from a neurofeedback approach developed by our group, in which significant reductions in tinnitus loudness could be achieved in patients who successfully normalized their patterns of spontaneous brain activity. The current work attempts to complement these studies by scrutinizing how modulations of tinnitus intensity alter ongoing oscillatory activity.</p> <p>Results</p> <p>In the present study the relation between tinnitus sensation and spontaneous brain activity was investigated using residual inhibition (RI) to reduce tinnitus intensity and source-space projected magnetencephalographic (MEG) data to index brain activity. RI is the sustained reduction (criteria: 50% for at least 30 s) in tinnitus loudness after cessation of a tonal tinnitus masker. A pilot study (n = 38) identified 10 patients who showed RI. A significant reduction of power in the delta (1.3–4.0 Hz) frequency band was observed in temporal regions during RI (p ≤ 0.001).</p> <p>Conclusion</p> <p>The current results suggest that changes of tinnitus intensity induced by RI are mediated by alterations in the pathological patterns of spontaneous brain activity, specifically a reduction of delta activity. Delta activity is a characteristic oscillatory activity generated by deafferented/deprived neuronal networks. This implies that RI effects might reflect the transient reestablishment of balance between excitatory and inhibitory neuronal assemblies, via reafferentation, that have been perturbed (in most tinnitus individuals) by hearing damage. As enhancements have been reported in the delta frequency band for tinnitus at rest, this result conforms to our assumption that a normalization of oscillatory properties of cortical networks is a prerequisite for attenuating the tinnitus sensation. For RI to have therapeutic significance however, this normalization would have to be stabilized.</p

    Substance P induces localization of MIF/α1-inhibitor-3 complexes to umbrella cells via paracellular transit through the urothelium in the rat bladder

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is released into the intraluminal fluid during bladder inflammation in the rat complexed to α1-inhibitor-3 (A1-I3; a rodent proteinase inhibitor in the α-macroglobulin family). The location of A1-I3 in the bladder had not been investigated. Therefore, we examined the location of A1-I3 and MIF/A1-I3 complexes in the bladder and changes due to experimental inflammation. METHODS: Anesthetized male rats had bladders removed with no treatment (intact) or were injected with Substance P (SP; s.c.; saline vehicle). After one hour intraluminal fluid was removed, bladder was excised and MIF and A1-I3 levels were determined using ELISA and/or western-blotting. MIF co-immunoprecipitation determined MIF/A1-I3 complexes in the bladder. Bladder sections were immunostained for A1-I3 and MIF/A1-I3. RESULTS: A1-I3 immunostaining was observed in interstitial spaces throughout the bladder (including submucosa) but not urothelium in intact and saline-treated rats. RT-PCR showed that the bladder does not synthesize A1-I3, therefore, A1-I3 in the interstitial space of the bladder must be plasma derived. In SP-treated rats, A1-I3 in the bladder increased and A1-I3 was observed traversing through the urothelium. Umbrella cells that do not show MIF and/or A1-I3 immunostaining in intact or saline-treated rats, showed co-localization of MIF and A1-I3 after SP-treatment. Western blotting demonstrated that in the bladder MIF formed non-covalent interactions and also binds covalently to A1-I3 to form high molecular weight MIF/A1-I3 complexes (170, 130 and 75-kDa, respectively, verified by co-immunoprecipitation). SP-induced inflammation selectively reduced 170-kDa MIF/A1-I3 in the bladder while increasing 170 and 130-kDa MIF/A1-I3 in the intraluminal fluid. CONCLUSION: A1-I3 and MIF/A1-I3 complexes are resident in bladder interstitium. During SP-induced inflammation, MIF/A1-I3 complexes are released from the bladder into the lumen. Binding of MIF/A1-I3 complexes to urothelial cells during inflammation suggests these complexes participate in the inflammatory reaction through activation of receptors for MIF and/or for A1-I3

    Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARγ and RXRα is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARγ alone and in the presence of retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPARγ remains in the monomeric form by itself but forms heterodimers with hRXRα. The low-resolution models of hPPARγ/RXRα complexes predict significant changes in opening angle between heterodimerization partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex

    Financial Satisfaction and (in)formal Sector in a Transition Country

    Get PDF
    This paper examines the relationship between working in the formal or informal sector and self-reported individual financial satisfaction in a country in transition. It does so by allowing for individual heterogeneity in terms of perceived financial insecurity and tax morale. The empirical analysis uses a dataset for Albania, a country in transition. The method applied is the ‘self-administered questionnaire’, which combines personal contacts with written questionnaire. The results indicate that, for most individuals, working in the informal sector has negative effects on their self reported financial satisfaction. For some individuals, however, this effect is positive. The characteristic defining these two groups of individuals is their attitude towards the perceived financial insecurity related to not paying taxes. These findings have important implications, in particular for transition countries with large informal sectors. Given the involuntary participation in the informal sector in these countries, the majority of individuals working in this sector will remain financially dissatisfied as long as they have no other social safety net

    Expression of the zinc-finger transcription factor Snail in adrenocortical carcinoma is associated with decreased survival

    Get PDF
    In this study, we evaluate whether Snail is expressed in adrenocortical cancer (ACC) and if its expression is related to patient outcome. One of the best known functions of the zinc-finger transcription factor Snail is to induce epithelial-to-mesenchymal transition (EMT). Increasing evidence suggests that EMT plays a pivotal role in tumour progression and metastatic spread. Snail and E-cadherin expression were assessed by immunohistochemistry in 26 resected ACCs and real-time quantitative RT–PCR expression analysis was performed. Data were correlated with clinical outcome and in particular with overall patient survival. Seventeen of 26 (65%) ACC tumour samples expressed Snail when assessed by immunohistochemistry. Snail expression was neither detected in normal adrenocortical tissue, nor in benign adrenocortical adenomas. Expression levels were confirmed on the mRNA level by Real-Time–PCR. Survival rates were significantly decreased in Snail-positive tumours compared to Snail-negative tumours: 10 out of 16 vs one out of eight patients succumbed to disease after a median follow up of 14.5 and 28.5 months, respectively (P=0.03). Patients with Snail-expressing ACCs presented in advanced disease (11 out of 12 vs 6 out of 14, P=0.01) and tend to develop distant metastases more frequently than patients with negative staining (7 out of 11 vs two out of eight, P=0.19). In conclusion, we describe for the first time that Snail is expressed in a large subset of ACCs. Furthermore, Snail expression is associated with decreased survival, advanced disease and higher risk of developing distant metastases

    Association of urinary phthalate metabolite concentrations with body mass index and waist circumference: a cross-sectional study of NHANES data, 1999–2002

    Get PDF
    BACKGROUND: Although diet and activity are key factors in the obesity epidemic, laboratory studies suggest that endocrine disrupting chemicals may also affect obesity. METHODS: We analyzed associations between six phthalate metabolites measured in urine and body mass index (BMI) and waist circumference (WC) in National Health and Nutrition Examination Survey (NHANES) participants aged 6–80. We included 4369 participants from NHANES 1999–2002, with data on mono-ethyl (MEP), mono-2-ethylhexyl (MEHP), mono-n-butyl (MBP), and mono-benzyl (MBzP) phthalate; 2286 also had data on mono-2-ethyl-5-hydroxyhexyl (MEHHP) and mono-2-ethyl-5-oxohexyl (MEOHP) phthalate (2001–2002). Using multiple regression, we computed mean BMI and WC within phthalate quartiles in eight age/gender specific models. RESULTS: The most consistent associations were in males aged 20–59; BMI and WC increased across quartiles of MBzP (adjusted mean BMI = 26.7, 27.2, 28.4, 29.0, p-trend = 0.0002), and positive associations were also found for MEOHP, MEHHP, MEP, and MBP. In females, BMI and WC increased with MEP quartile in adolescent girls (adjusted mean BMI = 22.9, 23.8, 24.1, 24.7, p-trend = 0.03), and a similar but less strong pattern was seen in 20–59 year olds. In contrast, MEHP was inversely related to BMI in adolescent girls (adjusted mean BMI = 25.4, 23.8, 23.4, 22.9, p-trend = 0.02) and females aged 20–59 (adjusted mean BMI = 29.9, 29.9, 27.9, 27.6, p-trend = 0.02). There were no important associations among children, but several inverse associations among 60–80 year olds. CONCLUSION: This exploratory, cross-sectional analysis revealed a number of interesting associations with different phthalate metabolites and obesity outcomes, including notable differences by gender and age subgroups. Effects of endocrine disruptors, such as phthalates, may depend upon endogenous hormone levels, which vary dramatically by age and gender. Individual phthalates also have different biologic and hormonal effects. Although our study has limitations, both of these factors could explain some of the variation in the observed associations. These preliminary data support the need for prospective studies in populations at risk for obesity.National Institutes of Environmental Health Sciences (R21ES013724

    Design Novel Dual Agonists for Treating Type-2 Diabetes by Targeting Peroxisome Proliferator-Activated Receptors with Core Hopping Approach

    Get PDF
    Owing to their unique functions in regulating glucose, lipid and cholesterol metabolism, PPARs (peroxisome proliferator-activated receptors) have drawn special attention for developing drugs to treat type-2 diabetes. By combining the lipid benefit of PPAR-alpha agonists (such as fibrates) with the glycemic advantages of the PPAR-gamma agonists (such as thiazolidinediones), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of the powerful “core hopping” and “glide docking” techniques, a novel class of PPAR dual agonists was discovered based on the compound GW409544, a well-known dual agonist for both PPAR-alpha and PPAR-gamma modified from the farglitazar structure. It was observed by molecular dynamics simulations that these novel agonists not only possessed the same function as GW409544 did in activating PPAR-alpha and PPAR-gamma, but also had more favorable conformation for binding to the two receptors. It was further validated by the outcomes of their ADME (absorption, distribution, metabolism, and excretion) predictions that the new agonists hold high potential to become drug candidates. Or at the very least, the findings reported here may stimulate new strategy or provide useful insights for discovering more effective dual agonists for treating type-2 diabetes. Since the “core hopping” technique allows for rapidly screening novel cores to help overcome unwanted properties by generating new lead compounds with improved core properties, it has not escaped our notice that the current strategy along with the corresponding computational procedures can also be utilized to find novel and more effective drugs for treating other illnesses

    The mechanisms by which polyamines accelerate tumor spread

    Get PDF
    Increased polyamine concentrations in the blood and urine of cancer patients reflect the enhanced levels of polyamine synthesis in cancer tissues arising from increased activity of enzymes responsible for polyamine synthesis. In addition to their de novo polyamine synthesis, cells can take up polyamines from extracellular sources, such as cancer tissues, food, and intestinal microbiota. Because polyamines are indispensable for cell growth, increased polyamine availability enhances cell growth. However, the malignant potential of cancer is determined by its capability to invade to surrounding tissues and metastasize to distant organs. The mechanisms by which increased polyamine levels enhance the malignant potential of cancer cells and decrease anti-tumor immunity are reviewed. Cancer cells with a greater capability to synthesize polyamines are associated with increased production of proteinases, such as serine proteinase, matrix metalloproteinases, cathepsins, and plasminogen activator, which can degrade surrounding tissues. Although cancer tissues produce vascular growth factors, their deregulated growth induces hypoxia, which in turn enhances polyamine uptake by cancer cells to further augment cell migration and suppress CD44 expression. Increased polyamine uptake by immune cells also results in reduced cytokine production needed for anti-tumor activities and decreases expression of adhesion molecules involved in anti-tumor immunity, such as CD11a and CD56. Immune cells in an environment with increased polyamine levels lose anti-tumor immune functions, such as lymphokine activated killer activities. Recent investigations revealed that increased polyamine availability enhances the capability of cancer cells to invade and metastasize to new tissues while diminishing immune cells' anti-tumor immune functions

    Transoceanic Dispersal and Subsequent Diversification on Separate Continents Shaped Diversity of the Xanthoparmelia pulla Group (Ascomycota)

    Get PDF
    In traditional morphology-based concepts many species of lichenized fungi have world-wide distributions. Molecular data have revolutionized the species delimitation in lichens and have demonstrated that we underestimated the diversity of these organisms. The aim of this study is to explore the phylogeography and the evolutionary patterns of the Xanthoparmelia pulla group, a widespread group of one of largest genera of macrolichens. We used a dated phylogeny based on nuITS and nuLSU rDNA sequences and performed an ancestral range reconstruction to understand the processes and explain their current distribution, dating the divergence of the major lineages in the group. An inferred age of radiation of parmelioid lichens and the age of a Parmelia fossil were used as the calibration points for the phylogeny. The results show that many species of the X. pulla group as currently delimited are polyphyletic and five major lineages correlate with their geographical distribution and the biosynthetic pathways of secondary metabolites. South Africa is the area where the X. pulla group radiated during the Miocene times, and currently is the region with the highest genetic, morphological and chemical diversity. From this center of radiation the different lineages migrated by long-distance dispersal to others areas, where secondary radiations developed. The ancestral range reconstruction also detected that a secondary lineage migrated from Australia to South America via long-distance dispersal and subsequent continental radiation
    corecore