239 research outputs found

    CIRCULAR DICHROISM OF LIGHT-HARVESTING COMPLEXES FROM PURPLE PHOTOSYNTHETIC BACTERIA

    Get PDF
    The CD spectra of a range of antenna complexes from several different species of purple photosynthetic bacteria were recorded in the wavelength range of 190 to 930 nm. Analysis of the far UV CD (190 to 250 nm) showed that in each case except for the B800-850 from Chr. vinosum the secondary structure of the light-harvesting complexes contains a large amount of α-helix (50%) and very little 0-pleated sheet. This confirms the predictions of the group of Zuber of a high a-helical content based upon consideration of the primary structures of several antenna apoproteins. The CD spectra from the carotenoids and the bacteriochlorophylls show considerable variations depending upon the type of antenna complex. The different amplitude ratios in the CD spectrum for the bacteriochlorophyll Qy, Qx and Soret bands indicate not only different degrees of exciton coupling, but also a strong and variable hyperchromism (Scherz and Parson, 1984a, b)

    Low-Dose Caffeine Administration During Acute Sleep Deprivation Eliminates Visual Motion Processing Impairment, but Does Not Improve Saccadic Rate

    Get PDF
    Oculomotor tracking performance changes according to time awake. A constant routine (CR) study demonstrated that increasing time awake 1) reduces the precision of visual motion processing, 2) decreases steady-state closed-loop pursuit performance and 3) decreases peak saccadic velocity. We aimed to determine the contribution of homeostatic sleep pressure on these oculometric changes by administering low-dose caffeine over one night of sleep deprivation. Participants completed two weeks of at-home 8.5 hours sleep per day, followed by an approximately 24-hour laboratory CR in semi-recumbent posture under less than 4 lux of light. The visual tracking task was performed every two hours after waking and hourly overnight. Low-dose caffeine of 0.3 milligrams per kilogram was administered hourly during the biological night. Nine participants (5F) completed the study. Caffeine dosing: 1) prevented the impairment of visual motion processing, 2) reduced by approximately half the impairment of closed-loop pursuit performance (gain, minus 0.47 percent per hour, significance of slope change: p (probability) less than 0.006; proportion smooth, minus 0.35 percent per hour, p less than 0.005), and 3) had an insignificant (p less than 0.39) effect on the impairment of saccadic peak velocity (slope, minus 1.13 percent per hour; intercept, minus 0.62 percent per hour). These results suggest that visual motion processing and some proportion of closed-loop pursuit performance are impaired due to homeostatic mechanisms during sleep deprivation

    Dose-dependent sensorimotor impairment in human ocular tracking after acute low-dose alcohol administration

    Get PDF
    Key points: Oculomotor behaviours are commonly used to evaluate sensorimotor disruption due to ethanol (EtOH). The current study demonstrates the dose-dependent impairment in oculomotor and ocular behaviours across a range of ultra-low BACs (\u3c0.035%). Processing of target speed and direction, as well as pursuit eye movements, are significantly impaired at 0.015% BAC, suggesting impaired neural activity within brain regions associated with the visual processing of motion. Catch-up saccades during steady visual tracking of the moving target compensate for the reduced vigour of smooth eye movements that occurs with the ingestion of low-dose alcohol. Saccade dynamics start to become ‘sluggish’ at as low as 0.035% BAC. Pupillary light responses appear unaffected at BAC levels up to 0.065%. Abstract: Changes in oculomotor behaviours are often used as metrics of sensorimotor disruption due to ethanol (EtOH); however, previous studies have focused on deficits at blood-alcohol concentrations (BACs) above about 0.04%. We investigated the dose dependence of the impairment in oculomotor and ocular behaviours caused by EtOH administration across a range of ultra-low BACs (≤0.035%). We took repeated measures of oculomotor and ocular performance from sixteen participants, both pre- and post-EtOH administration. To assess the neurological impacts across a wide range of brain areas and pathways, our protocol measured 21 largely independent performance metrics extracted from a range of behavioural responses ranging from ocular tracking of radial step-ramp stimuli, to eccentric gaze holding, to pupillary responses evoked by light flashes. Our results show significant impairment of pursuit and visual motion processing at 0.015% BAC, reflecting degraded neural processing within extrastriate cortical pathways. However, catch-up saccades largely compensate for the tracking displacement shortfall caused by low pursuit gain, although there still is significant residual retinal slip and thus degraded dynamic acuity. Furthermore, although saccades are more frequent, their dynamics are more sluggish (i.e. show lower peak velocities) starting at BAC levels as low as 0.035%. Small effects in eccentric gaze holding and no effect in pupillary response dynamics were observed at levels below 0.07%, showing the higher sensitivity of the pursuit response to very low levels of blood alcohol, under the conditions of our study

    Impairment of Human Ocular Tracking with Low-Dose Alcohol

    Get PDF
    Previous studies have documented adverse effects of alcohol on oculomotor performance. For example, moderate-dose alcohol (yielding a Blood Alcohol Concentration or BAC of 0.04-0.1%) has been shown to decrease steady-state pursuit gain (Fransson et al., 2010, Clin Neurophysiol, 121(12): 2134; Moser et al., 1998, J Neurol, 245(8): 542; Roche & King, 2010, Psychopharmacology, 212(1): 33), to increase saccade latency (Moser et al., 1998, J Neurol, 245(8): 542; Roche & King, 2010, Psychopharmacology, 212(1): 33), to decrease peak saccadic velocity (Fransson et al., 2010, Clin Neurophysiol, 121(12): 2134; Roche & King, 2010, Psychopharmacology, 212(1): 33), and to increase the frequency of catch-up saccades (Moser et al., 1998, J Neurol, 245(8): 542). Here, we administered two doses of ethanol on different days, yielding moderate (0.06%) and low (0.02%) levels of initial BAC, to examine the effects on human ocular tracking over BACs ranging from 0.00 to 0.07%. Twelve subjects (8 females) participated in a 5-day study. Three days of at-home measurements of daily activity and sleep were monitored, followed by two laboratory days where, ~5 hours after awakening, we administered one of the two possible single doses of alcohol. Using a previously published paradigm (Liston & Stone, 2014, J Vis, 14(14): 12), we measured oculomotor performance multiple times throughout the day with three pre-dosing baseline runs and bi-hourly post-dosing test runs until the subject recorded a BAC of 0.00% for two hours. BAC was measured before each run using an Alco-Sensor IV breathalyzer (Intoximeters, Inc., St. Louis, MO). For each of the oculometric measures, for each subject, we computed the within-subject % deviation for each test run from their baseline averaged across their three pre-dosing runs. We then averaged the data across subjects in 0.01% BAC bins. Finally, we used linear regression to compute the slope and x-intercept (threshold) of the mean binned % deviation as a function of BAC. We found that pursuit initiation was impaired at very low BAC levels, with significant (p < 0.002) linear trends in latency (+1.3%/0.01%BAC) and initial acceleration (-4.6%/0.01%BAC) with extrapolated absolute thresholds at or below 0.01% BAC. We also found that steady-state tracking was impaired showing significant (p < 0.002) linear trends in gain (- 3.8%/0.01%BAC) and catch-up saccade amplitude (+9.1%/0.01%BAC), again with extrapolated absolute thresholds around 0.01% BAC. We also found a significant (p < 0.02) increase in pursuit direction noise (+9.8%/0.01%BAC) with an extrapolated absolute threshold below 0.01% BAC. Many aspects of ocular tracking are impaired in a dose-dependent manner beginning at a BAC level around 0.01%, with significant effects at levels lower than previously reported and up to 8-times lower than the legal limit for driving in most states

    Increased Dependence on Saccades for Ocular Tracking with Low Dose Alcohol

    Get PDF
    Previous studies have shown that certain features of oculomotor performance are impaired at or slightly below the legal limit for driving in most U.S. States (0.08% Blood Alcohol Concentration or BAC). Specifically, alcohol impairs saccadic velocity and steady-state tracking at levels between 0.04% and 0.1% BAC. Here we used a suite of standardized oculometric measures to examine the effect of ultra-low levels of alcohol (down to 0.01% BAC) on steady-state tracking. Our high-uncertainty tracking task reveals that the smooth pursuit system is highly sensitive to BAC, with impairmentextrapolating back to BAC levels at or below 0.01%. BAC generates a dose dependent increase in reliance on the saccadic system that maintains overall steady-state tracking effectiveness at least up to 0.08% BAC, albeit with a significant decrease in smoothness

    Modified reaction centers from Rhodobacter sphaeroides R26

    Get PDF
    Incubation of photosynthetic reaction centers from Rhodobacter sphaeroides R26 with exogenous 132-OH-bacteriochlorophyll ap or aGG according to Scheer et al. (1987) results in the exchange of endogenous bacteriochlorophyll ap. The exchange amounts to less-than-or-equals, slant 50% according to HPLC analysis, corresponding to a complete replacement of the ‘monomeric’ bacteriochlorophylls, bm and bl, by exogenous pigment. The absorption spectra show small, but distinct changes in the Qx-region of the bacteriochlorophylls, and bleaching of the modified reaction centers is retained. The corresponding binding sites must be accessible from the exterior, and allow for the introduction of a polar residue at C-132. This is supported by the observation of side reactions of the endogenous ‘monomeric’ bacteriochlorophylls within the reaction center pigments, e.g. epimerization and hydroxylation at C-132

    Proton endor study of the photoexcited triplet state PT in Rps. sphaeroides R-26 photosynthetic reaction centres

    Get PDF
    The photoexcited triplet state PT of Rhodopseudomonas sphaeroides R-26 has been investigated by ENDOR measurements performed on frozen photosynthetic reaction centre solutions. For the first time hyperfine data could be obtained for PT. These data indicate a delocalisation of the triplet state over two bacteriochlorophyll a molecules

    Rise and shine: The use of polychromatic short-wavelength-enriched light to mitigate sleep inertia at night following awakening from slow-wave sleep

    Get PDF
    Sleep inertia is the brief period of performance impairment and reduced alertness experienced after waking, especially from slow-wave sleep. We assessed the efficacy of polychromatic short-wavelength-enriched light to improve vigilant attention, alertness and mood immediately after waking from slow-wave sleep at night. Twelve participants (six female, 23.3 ± 4.2 years) maintained an actigraphy-confirmed sleep schedule of 8.5 hr for 5 nights, and 5 hr for 1 night prior to an overnight laboratory visit. In the laboratory, participants were awakened from slow-wave sleep, and immediately exposed to either dim, red ambient light (control) or polychromatic short-wavelength-enriched light (light) for 1 hr in a randomized crossover design. They completed a 5-min Psychomotor Vigilance Task, the Karolinska Sleepiness Scale, and Visual Analogue Scales of mood at 2, 17, 32 and 47 min after waking. Following this testing period, lights were turned off and participants returned to sleep. They were awakened from their subsequent slow-wave sleep period and received the opposite condition. Compared with the control condition, participants exposed to light had fewer Psychomotor Vigilance Task lapses (χ2[1] = 5.285, p = 0.022), reported feeling more alert (Karolinska Sleepiness Scale: F1,77 = 4.955, p = 0.029; Visual Analogue Scalealert: F1,77 = 8.226, p = 0.005), and reported improved mood (Visual Analogue Scalecheerful: F1,77 = 8.615, p = 0.004). There was no significant difference in sleep-onset latency between conditions following the testing period (t10 = 1.024, p = 0.330). Our results suggest that exposure to polychromatic short-wavelength-enriched light immediately after waking from slow-wave sleep at night may help improve vigilant attention, subjective alertness, and mood. Future studies should explore the potential mechanisms of this countermeasure and its efficacy in real-world environments

    Lattice-matched HfN buffer layers for epitaxy of GaN on Si

    Get PDF
    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using sputter-deposited hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 (mu)m. Initial results for GaN grown on the (111) surface show a photoluminescence peak width of 17 meV at 11 K, and an asymmetric x-ray rocking curve width of 20 arcmin. Wurtzite GaN on HfN/Si(001) shows reduced structural quality and peculiar low-temperature luminescence features. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained

    Pion-induced damage in silicon detectors

    Get PDF
    The damage induced by pions in silicon detectors is studied for positive and negative pions for fluence up to 10(14)cm-2 and 10(13) cm-2 respectively. Results on the energy dependence of the damage in the region of 65-330 MeV near to the resonance are presented. The change in detector characteristics such as leakage current, charge collection efficiency and effective impurity concentration including long-term annealing effects have been studied. Comparisons to neutron and proton-induced damage are presented and discussed
    corecore