research

Impairment of Human Ocular Tracking with Low-Dose Alcohol

Abstract

Previous studies have documented adverse effects of alcohol on oculomotor performance. For example, moderate-dose alcohol (yielding a Blood Alcohol Concentration or BAC of 0.04-0.1%) has been shown to decrease steady-state pursuit gain (Fransson et al., 2010, Clin Neurophysiol, 121(12): 2134; Moser et al., 1998, J Neurol, 245(8): 542; Roche & King, 2010, Psychopharmacology, 212(1): 33), to increase saccade latency (Moser et al., 1998, J Neurol, 245(8): 542; Roche & King, 2010, Psychopharmacology, 212(1): 33), to decrease peak saccadic velocity (Fransson et al., 2010, Clin Neurophysiol, 121(12): 2134; Roche & King, 2010, Psychopharmacology, 212(1): 33), and to increase the frequency of catch-up saccades (Moser et al., 1998, J Neurol, 245(8): 542). Here, we administered two doses of ethanol on different days, yielding moderate (0.06%) and low (0.02%) levels of initial BAC, to examine the effects on human ocular tracking over BACs ranging from 0.00 to 0.07%. Twelve subjects (8 females) participated in a 5-day study. Three days of at-home measurements of daily activity and sleep were monitored, followed by two laboratory days where, ~5 hours after awakening, we administered one of the two possible single doses of alcohol. Using a previously published paradigm (Liston & Stone, 2014, J Vis, 14(14): 12), we measured oculomotor performance multiple times throughout the day with three pre-dosing baseline runs and bi-hourly post-dosing test runs until the subject recorded a BAC of 0.00% for two hours. BAC was measured before each run using an Alco-Sensor IV breathalyzer (Intoximeters, Inc., St. Louis, MO). For each of the oculometric measures, for each subject, we computed the within-subject % deviation for each test run from their baseline averaged across their three pre-dosing runs. We then averaged the data across subjects in 0.01% BAC bins. Finally, we used linear regression to compute the slope and x-intercept (threshold) of the mean binned % deviation as a function of BAC. We found that pursuit initiation was impaired at very low BAC levels, with significant (p < 0.002) linear trends in latency (+1.3%/0.01%BAC) and initial acceleration (-4.6%/0.01%BAC) with extrapolated absolute thresholds at or below 0.01% BAC. We also found that steady-state tracking was impaired showing significant (p < 0.002) linear trends in gain (- 3.8%/0.01%BAC) and catch-up saccade amplitude (+9.1%/0.01%BAC), again with extrapolated absolute thresholds around 0.01% BAC. We also found a significant (p < 0.02) increase in pursuit direction noise (+9.8%/0.01%BAC) with an extrapolated absolute threshold below 0.01% BAC. Many aspects of ocular tracking are impaired in a dose-dependent manner beginning at a BAC level around 0.01%, with significant effects at levels lower than previously reported and up to 8-times lower than the legal limit for driving in most states

    Similar works