133 research outputs found
Measurement using flexural ultrasonic transducers in high pressure environments
The flexural ultrasonic transducer comprises a metallic membrane to which an active element such as a piezoelectric ceramic is attached. The normal modes of the membrane are exploited to generate and receive the desired ultrasonic wave. Flexural ultrasonic transducers are popular due to their ability to couple to different media without requiring matching layers. There is growing demand for ultrasound measurement using flexural ultrasonic transducers in high pressure environments, such as in gas metering. However, their sealing increases the risk of transducer deformation as the pressure level is raised, due to pressure imbalance between the internal cavity of the transducer and the external environment. In this study, a novel form of flexural ultrasonic transducer for operation in high pressure environments, those above 100 bar, is shown alongside key measurement strategies. Different methods can be used to enable pressure equalization between the internal cavity and the external environment, one of which is venting and used in this study. Dynamic performance is monitored via pitch-catch ultrasound measurement in air up to 130 bar. The results suggest the suitability of the vented transducer for operation in high pressure environments compared to the classical flexural ultrasonic transducer, constituting a significant development in ultrasonic measurement
Superb Fairy-wrens (Malurus cyaneus) increase vigilance near their nest with the perceived risk of brood parasitism
Brood parasites typically impose costs on their hosts, which select for host defenses. However, where defenses are costly, hosts can benefit by facultative expression of defenses in relation to the risk of parasitism. The results of our model-presentation experiments show that Superb Fairy-wrens (Malurus cyaneus) mediate vigilance around their nest according to their perceived risk of brood parasitism; when the risk of parasitism is high, they increase the time they spend in the vicinity of their nests. In combination with previous studies, these data suggest that Superb Fairy-wrens have a plastic defense portfolio that can be acquired rapidly and deployed facultatively to prevent parasitism while minimizing wasteful investment in defenses in the absence of parasitism
Why cuckoos remove host eggs: Biting eggs facilitates faster parasitic eggâlaying
Brood parasitism by cuckoos relies on manipulating hosts to raise their offspring and has evolved stunning adaptations to aid in their deception. The fact that cuckoos usually but not always, remove one or two host eggs while laying their eggs has been a longstanding focus of intensive research. However, the benefit of this behavior remains elusive. Moreover, the recently proposed help delivery hypothesis, predicting that egg removal by cuckoos may decrease the eggâlaying duration in the parasitism process caused by biting action, lacks experimental verification. Therefore, in this study, we examined the effects of egg removal/biting on the eggâlaying speed in the common cuckoo (Cuculus canorus) to experimentally test this hypothesis. We compared the duration of cuckoo eggâlaying in empty nests, nests with host eggs, and nests with artificial blue stick models to test whether cuckoos biting an egg/stick can significantly hasten the eggâlaying speed than no biting action. Our results showed that biting an egg or an object is associated with cuckoos laying approximately 37% faster than when they do not bite an egg or an object. This study provides the first experimental evidence for the help delivery hypothesis and demonstrates that when cuckoos bite eggs or other objects in the nest, they lay eggs more quickly and thereby avoid suffering the hosts' injurious attack
Aquaporins influence seed dormancy and germination in response to stress
Aquaporins influence water flow in plants, yet little is known of their involvement in the waterâdriven process of seed germination. We therefore investigated their role in seeds in the laboratory and under field and global warming conditions. We mapped the expression of tonoplast intrinsic proteins (TIPs) during dormancy cycling and during germination under normal and water stress conditions. We found that the two key tonoplast aquaporins, TIP3;1 and TIP3;2, which have previously been implicated in water or solute transport, respectively, act antagonistically to modulate the response to abscisic acid, with TIP3;1 being a positive and TIP3;2 a negative regulator. A third isoform, TIP4;1, which is normally expressed upon completion of germination, was found to play an earlier role during water stress. Seed TIPs also contribute to the regulation of depth of primary dormancy and differences in the induction of secondary dormancy during dormancy cycling. Protein and gene expression during annual cycling under field conditions and a global warming scenario further illustrate this role. We propose that the different responses of the seed TIP contribute to mechanisms that influence dormancy status and the timing of germination under variable soil conditions
Nest destruction elicits indiscriminate con- versus heterospecific brood parasitism in a captive bird
Following nest destruction, the laying of physiologically committed eggs (eggs that are ovulated, yolked, and making their way through the oviduct) in the nests of other birds is considered a viable pathway for the evolution of obligate interspecific brood parasitism. While intraspecific brood parasitism in response to nest predation has been experimentally demonstrated, this pathway has yet to be evaluated in an interspecific context. We studied patterns of egg laying following experimental nest destruction in captive zebra finches, Taeniopygia guttata, a frequent intraspecific brood parasite. We found that zebra finches laid physiologically committed eggs indiscriminately between nests containing conspecific eggs and nests containing heterospecific eggs (of Bengalese finches, Lonchura striata vars. domestica), despite the con- and heterospecific eggs differing in both size and coloration. This is the first experimental evidence that nest destruction may provide a pathway for the evolution of interspecific brood parasitism in birds
Insular nestling growth and its relationship to parental care effort in Silvereyes, Zosterops lateralis
The rate at which avian offspring grow can have consequences for survival and reproductive output as an adult and is known to vary widely among and within species. This variation is thought to be an adaptive response to cope with environmental variation. The principal environmental factors affecting growth are food availability and predation risk, predominantly acting as constraints on parental care. Islands pose an interesting system to explore growth rate dynamics, because the characteristic insular features of high population densities and depauperate predator diversity translate into a potentially food limited environment with low predation risk. Insular environments typically produce populations with slower life history strategies and larger body size in small-bodied species, features that are likely to be mediated by growth rate. We describe the nestling growth of an insular population of Silvereyes and how it relates to parental size and parental care. Neither parental size nor parental care explained insular nestling growth rate, even though food acquisition is thought to underpin avian growth rates. This could be due to a mismatch between acquisition and allocation of resources by nestlings. Compared to a small number of mainland nestlings, the island growth curve asymptotes were significantly larger and inflection points much later, but insular growth rates were only marginally slower. This is in line with proposed insular adaptations required to produce larger body size on islands, however understanding the mechanism underlying this pattern will require data on the relationship between food quality and acquisition, and physiological allocation of resources within individuals
Domestication via the commensal pathway in a fish-invertebrate mutualism.
Domesticator-domesticate relationships are specialized mutualisms where one species provides multigenerational support to another in exchange for a resource or service, and through which both partners gain an advantage over individuals outside the relationship. While this ecological innovation has profoundly reshaped the world's landscapes and biodiversity, the ecological circumstances that facilitate domestication remain uncertain. Here, we show that longfin damselfish (Stegastes diencaeus) aggressively defend algae farms on which they feed, and this protective refuge selects a domesticator-domesticate relationship with planktonic mysid shrimps (Mysidium integrum). Mysids passively excrete nutrients onto farms, which is associated with enriched algal composition, and damselfish that host mysids exhibit better body condition compared to those without. Our results suggest that the refuge damselfish create as a byproduct of algal tending and the mutual habituation that damselfish and mysids exhibit towards one another were instrumental in subsequent mysid domestication. These results are consistent with domestication via the commensal pathway, by which many common examples of animal domestication are hypothesized to have evolved
Oil filled flexural ultrasonic transducers for resilience in environments of elevated pressure
In recent years, flexural ultrasonic transducers (FUTs) have gained popularity in a wider scope of applications, due to their robust design and efficient coupling to different fluids. They comprise a metallic membrane with a piezoelectric ceramic bonded to its underside, typically protected with a silicone backing to seal the FUT from its environment. However, the sealed interior of the commercially available and widely used FUT has restricted its application in environments above 1 bar, where pressure imbalances are known to lead to unstable dynamic performance, and deformation of the piezoelectric-membrane structure and the housing of the transducer. The recently reported approach of venting, such as the removal of the hermetic seal, has been shown to boost the resilience of FUTs to environments of elevated pressure, but an alternative approach is needed to prevent exposure of sensitive internal structures within the transducer to an external fluid. In this study, a novel FUT design for ultrasound measurement in elevated pressure environments is proposed, where the vibrating membrane is backed with an incompressible fluid comprising a non-volatile oil. Prototype oil-filled flexural ultrasonic transducers (OFFUTs) are fabricated, and their dynamic performance monitored through acoustic microphone, electrical impedance, and pitch-catch ultrasound measurements. Enhanced resilience of the OFFUT to environmental pressures approaching 200 bar is displayed, expanding the potential applications of this device towards challenging flow and gas monitoring systems
Anemone bleaching impacts the larval recruitment success of an anemone-associated fish
In marine environments, mutualisms such as those between corals or sea anemones and their algal symbionts (Symbiodiniaceae) play a key role for supporting surrounding biodiversity. However, as the breakdown of the mutualism between corals and/or anemones and Symbiodiniaceae (i.e. bleaching) become increasingly frequent and severe, the risk of losing the additional species that rely on them may also increase. While the effects of anemone bleaching on the biology and ecology of anemone-associated fishes have been the subject of recent research, relatively little is known about the impacts that anemone bleaching might have on the recruitment of larval fish. Here, we report that climate change-induced anemone bleaching impairs a secondary mutualism between anemones and an anemone-associated fish species, the threespot dascyllus (Dascyllus trimaculatus). Field-based monitoring over a 1-year period showed anemones that bleached experienced decreased recruitment of larval D. trimaculatus compared to those that did not bleach, with abundances of newly settled D. trimaculatus three times lower in bleached versus unbleached anemones. A visual choice experiment showed that this pattern is associated with fish being less attracted to bleached anemones, and a predation experiment demonstrated that fish associated with bleached anemones experienced higher mortality compared to those associated with unbleached anemones. These results suggests that the decreased recruitment of D. trimaculatus observed in bleached anemones may be driven by hampered pre-settlement (habitat selection) and post-settlement (survival to predation) processes for larval D. trimaculatus in bleached hosts. This study highlights the risk of cascading mutualism breakdowns in coral reefs as conditions deteriorate and stresses the importance of protecting these mutualisms for the maintenance of coral reef biodiversity
- âŠ