132 research outputs found

    Hand-Rearing Reduces Fear of Humans in European Starlings, Sturnus vulgaris

    Get PDF
    Pending changes in European legislation ban the use of wild-caught animals in research. This change is partly justified on the assumption that captive-breeding (or hand-rearing) increases welfare of captive animals because these practices result in animals with reduced fear of humans. However, there are few actual data on the long-term behavioural effects of captive-breeding in non-domestic species, and these are urgently needed in order to understand the welfare and scientific consequences of adopting this practice. We compared the response of hand-reared and wild-caught starlings to the presence of a human in the laboratory. During human presence, all birds increased their general locomotor activity but the wild-caught birds moved away from the human and were less active than the hand-reared birds. After the human departed, the wild-caught birds were slower to decrease their activity back towards baseline levels, and showed a dramatic increase in time at the periphery of the cage compared with the hand-reared birds. We interpret these data as showing evidence of a greater fear response in wild-caught birds with initial withdrawal followed by a subsequent rebound of prolonged attempts to escape the cage. We found no effects of environmental enrichment. However, birds in cages on low shelves were less active than birds on upper shelves, and showed a greater increase in the time spent at the periphery of their cages after the human departed, perhaps indicating that the lower cages were more stressful. In demonstrating reduced fear of humans in hand-reared birds, our results support one of the proposed welfare benefits of this practice, but without further data on the possible welfare costs of hand-rearing, it is not yet possible to reach a general conclusion about its net welfare impact. However, our results confirm a clear scientific impact of both hand-rearing and cage position at the behavioural level

    Quantification of abnormal repetitive behaviour in captive European starlings (Sturnus vulgaris).

    Get PDF
    Stereotypies are repetitive, unvarying and goalless behaviour patterns that are often considered indicative of poor welfare in captive animals. Quantifying stereotypies can be difficult, particularly during the early stages of their development when behaviour is still flexible. We compared two methods for objectively quantifying the development of route-tracing stereotypies in caged starlings. We used Markov chains and T-pattern analysis (implemented by the software package, Theme) to identify patterns in the sequence of locations a bird occupied within its cage. Pattern metrics produced by both methods correlated with the frequency of established measures of stereotypic behaviour and abnormal behaviour patterns counted from video recordings, suggesting that both methods could be useful for identifying stereotypic individuals and quantifying stereotypic behaviour. We discuss the relative benefits and disadvantages of the two approaches

    Migratory birds use head scans to detect the direction of the earth’s magnetic field

    Get PDF
    Night-migratory songbirds are known to use a magnetic compass [1–3], but how do they detect the reference direction provided by the geomagnetic field, and where is the sensory organ located? The most prominent characteristic of geomagnetic sensory input, whether based on visual patterns [4–7] or magnetite-mediated forces [8, 9], is the predicted symmetry around the north-south or east-west magnetic axis. Here, we show that caged migratory garden warblers perform head-scanning behavior well suited to detect this magnetic symmetry plane. In the natural geomagnetic field, birds move toward their migratory direction after head scanning. In a zero-magnetic field [10], where no symmetry plane exists, the birds almost triple their head-scanning frequency, and the movement direction after a head scan becomes random. Thus, the magnetic sensory organ is located in the bird's head, and head scans are used to locate the reference direction provided by the geomagnetic field

    Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation

    No full text
    Migratory birds can use a magnetic compass for orientation during their migratory journeys covering thousands of kilometers. But how do they sense the reference direction provided by the Earth’s magnetic field? Behavioral evidence and theoretical considerations have suggested that radical-pair processes in differently oriented, light-sensitive molecules of the retina could enable migratory birds to perceive the magnetic field as visual patterns. The cryptochromes (CRYs) have been suggested as the most likely candidate class of molecules, but do CRYs exist in the retina of migratory birds? Here, we show that at least one CRY1 and one CRY2 exist in the retina of migratory garden warblers and that garden-warbler CRY1 (gwCRY1) is cytosolic. We also show that gwCRY1 is concentrated in specific cells, particularly in ganglion cells and in large displaced ganglion cells, which also showed high levels of neuronal activity at night, when our garden warblers performed magnetic orientation. In addition, there seem to be striking differences in CRY1 expression between migratory and nonmigratory songbirds at night. The difference in CRY1 expression between migrants and nonmigrants is particularly pronounced in the large displaced ganglion cells known to project exclusively to a brain area where magnetically sensitive neurons have been reported. Consequently, cytosolic gwCRY1 is well placed to possibly be the primary magnetic-sensory molecule required for light-mediated magnetoreception

    Evolutionary food web models: effects of an additional resource

    Get PDF
    Many empirical food webs contain multiple resources, which can lead to the emergence of sub-communities—partitions—in a food web that are weakly connected with each other. These partitions interact and affect the complete food web. However, the fact that food webs can contain multiple resources is often neglected when describing food web assembly theoretically, by considering only a single resource. We present an allometric, evolutionary food web model and include two resources of different sizes. Simulations show that an additional resource can lead to the emergence of partitions, i.e. groups of species that specialise on different resources. For certain arrangements of these partitions, the interactions between them alter the food web properties. First, these interactions increase the variety of emerging network structures, since hierarchical bodysize relationships are weakened. Therefore, they could play an important role in explaining the variety of food web structures that is observed in empirical data. Second, interacting partitions can destabilise the population dynamics by introducing indirect interactions with a certain strength between predator and prey species, leading to biomass oscillations and evolutionary intermittence

    Functional molecular diversity of marine dissolved organic matter is reduced during degradation

    Get PDF
    Dissolved organic matter (DOM) is a highly diverse mixture of compounds, accounting for one of the world's largest active carbon pools. The surprising recalcitrance of some DOM compounds to bacterial degradation has recently been associated with its diversity. However, little is known about large-scale patterns of marine DOM diversity and its change through degradation, in particular considering the functional diversity of DOM. Here, we analyze the development of marine DOM diversity during degradation in two data sets comprising DOM of very different ages: a three-year mesocosm experiment and highly-resolved field samples from the Atlantic and Southern Ocean. The DOM molecular composition was determined using ultra-high resolution mass spectrometry. We quantify DOM diversity using three conceptually different diversity measures, namely richness of molecular formulas, abundance-based diversity, and functional molecular diversity. Using these measures we find stable molecular richness of DOM with age >1 year, systematic changes in the molecules' abundance distribution with degradation state, and increasing homogeneity with respect to chemical properties for more degraded DOM. Coinciding with differences in sea water density, the spatial field data separated clearly into regions of high and low diversity. The joint application of different diversity measures yields a comprehensive overview on temporal and spatial patterns of molecular diversity, valuable for general conclusions on drivers and consequences of marine DOM diversity

    Functional Molecular Diversity of Marine Dissolved Organic Matter Is Reduced during Degradation

    Get PDF
    Dissolved organic matter (DOM) is a highly diverse mixture of compounds, accounting for one of the world's largest active carbon pools. The surprising recalcitrance of some DOM compounds to bacterial degradation has recently been associated with its diversity. However, little is known about large-scale patterns of marine DOM diversity and its change through degradation, in particular considering the functional diversity of DOM. Here, we analyze the development of marine DOM diversity during degradation in two data sets comprising DOM of very different ages: a three-year mesocosm experiment and highly-resolved field samples from the Atlantic and Southern Ocean. The DOM molecular composition was determined using ultra-high resolution mass spectrometry. We quantify DOM diversity using three conceptually different diversity measures, namely richness of molecular formulas, abundance-based diversity, and functional molecular diversity. Using these measures we find stable molecular richness of DOM with age >1 year, systematic changes in the molecules' abundance distribution with degradation state, and increasing homogeneity with respect to chemical properties for more degraded DOM. Coinciding with differences in sea water density, the spatial field data separated clearly into regions of high and low diversity. The joint application of different diversity measures yields a comprehensive overview on temporal and spatial patterns of molecular diversity, valuable for general conclusions on drivers and consequences of marine DOM diversity

    The long-term impact of infant rearing background on the affective state of adult common marmosets (Callithrix jacchus)

    Get PDF
    Early life environment, including temporary family separation, can have a major influence on affective state. Using a battery of tests, the current study compared the performance of adult common marmosets (Callithrix jacchus), reared as infants under 3 different conditions: family-reared twins, family-reared animals from triplet litters where only 2 remain (2stays) and supplementary fed triplets. No significant differences were found in latency to approach and obtain food from a human or a novel object between rearing conditions, suggesting no effect on neophobia. There were no differences in cognitive bias task acquisition time, or proportion of responses to each ambiguous probe. Very minor differences were found in response to the probes, with only supplementary fed marmosets making fewer responses to the middle probe, compared to the probe nearest the rewarded stimuli. Similarly, in a test for anhedonia, no difference was found between rearing conditions in consumption of milkshake at different concentrations. There was just one very small difference in reward motivation, with only supplementary fed triplets demonstrating a lack of preference for milkshake over water at the lowest concentration. This consistent pattern of results suggest that the supplementary feeding of large litters of marmosets at this facility did not have a major effect on welfare, and is unlikely to influence performance in reward-related scientific tasks. Therefore, while family separation is not recommended, this particular practice should be used if it is necessary, such as to reduce infant mortality. Regular positive interactions with humans are also encouraged, to reduce fear and improve welfare of marmosets kept in captivity

    Fear and Exploration in European Starlings (Sturnus vulgaris): A Comparison of Hand-Reared and Wild-Caught Birds

    Get PDF
    The revision of EU legislation will ban the use of wild-caught animals in scientific procedures. This change is partially predicated on the assumption that captive-rearing produces animals with reduced fearfulness. Previously, we have shown that hand-reared starlings (Sturnus vulgaris) indeed exhibit reduced fear of humans compared to wild-caught conspecifics. Here, we asked whether this reduction in fear in hand-reared birds is limited to fear of humans or extends more generally to fear of novel environments and novel objects. Comparing 6–8 month old birds hand-reared in the lab with age-matched birds caught from the wild as fledged juveniles a minimum of 1 month previously, we examined the birds' initial reactions in a novel environment (a small cage) and found that wild-caught starlings were faster to initiate movement compared to the hand-reared birds. We interpret this difference as evidence for greater escape motivation in the wild-caught birds. In contrast, we found no differences between hand-reared and wild-caught birds when tested in novel object tests assumed to measure neophobia and exploratory behaviour. Moreover, we found no correlations between individual bird's responses in the different tests, supporting the idea that these measure different traits (e.g. fear and exploration). In summary, our data show that developmental origin affects one measure of response to novelty in young starlings, indicative of a difference in either fear or coping style in a stressful situation. Our data contribute to a growing literature demonstrating effects of early-life experience on later behaviour in a range of species. However, since we did not find consistent evidence for reduced fearfulness in hand-reared birds, we remain agnostic about the welfare benefits of hand-rearing as a method for sourcing wild birds for behavioural and physiological research
    • …
    corecore