9 research outputs found

    Numerical simulation of the Marx–Generator behavior on nonlinear load-high-current vacuum diode

    No full text

    Influence of microscopic aerosol particles on emission characteristics of cold cathode

    No full text

    Pulsed plasma deposition of Fe-C-Cr-W coating on high-Cr-cast iron: Effect of layered morphology and heat treatment on the microstructure and hardness

    Get PDF
    Pulsed plasma treatment was applied for surface modification and laminated coating deposition on 14.5 wt%-Cr cast iron. The scopes of the research were: (a) to obtain a microstructure gradient, (b) to study the relationship between cathode material and coating layer microstructure/hardness, and (c) to improve coating quality by applying post-deposition heat treatment. An electrothermal axial plasma accelerator with a gas-dynamic working regime was used as plasma source (4.0 kV, 10 kA). The layered structure was obtained by alternation of the cathode material (T1 - 18 wt% W high speed steel and 28 wt% Cr-cast iron). It was found that pulsed plasma treatment led to substrate sub-surface modification by the formation of an 11–18 μm thick remelted layer with very fine carbide particles that provided a smooth transition from the substrate into the coating (80–120 μm thick). The as-deposited coating of 500–655 HV0.05 hardness consisted of “martensite/austenite” layers which alternated with heat-affected layers (layers the microstructure of which was affected by the subsequent plasma pulses). Post-deposition heat treatment (isothermal holding at 950 °C for 2 h followed by oil quenching) resulted in precipitation of carbides M7C3, M3C2, M3C (in Cr-rich layers) and M6C, M2C (in W-rich layers). These carbides were found to be Cr/W depleted in favor of Fe. The carbide precipitation led to a substantial increase in the coating hardness to 1240–1445 HV0.05. The volume fraction of carbides in the coating notably increased relatively to the electrode materials

    Plasma coating formation by the deposition of cathode material eroded through high-current pulsed discharge

    Get PDF
    The paper analyzes the conditions for the formation of a coating obtained using an electrothermal axial plasma accelerator due to plasma transfer of cathode erosion products. It is shown that by using a cathode of low-melting materials with a high-current pulsed discharge, microdrops are formed and injected from the accelerator falling into the surface to be treated. When colliding with the surface, the drops acquire near-disk shape with a radius of up to 100 µm, cooling on the substrate at a speed of up to 10⁸ K/s. This leads to the formation in the drops of a supersaturated solid solution with nonequilibrium structure. The subsequent heat treatment of the coating can result in hardening phases precipitation from solid solution causing the increase in coating microhardness.Проаналізовано умови формування покриття, що отримується за допомогою електротермічного аксіального плазмового прискорювача, за рахунок плазмового перенесення продуктів ерозії катода. Показано, що в разі використання катода з легкоплавких матеріалів при потужнострумовому імпульсному розряді утворюються і інжектуються із прискорювача мікрокраплі, що потрапляють на оброблювану поверхню. При зіткненні з поверхнею вони набувають форму диска радіусом до 100 мкм, охолоджуючись на підкладці зі швидкістю до 10⁸ К/с. Це призводить до формування в краплях нерівноважної структури пересиченого твердого розчину. Подальша термічна обробка покриття може викликати розпад розчину з виділенням зміцнюючих фаз з відповідним підвищенням мікротвердості покриття.Проанализированы условия формирования покрытия, получаемого с помощью электротермического аксиального плазменного ускорителя, за счет плазменного переноса продуктов эрозии катода. Показано, что в случае использования катода из легкоплавких материалов при сильноточном импульсном разряде образуются и инжектируются из ускорителя микрокапли, попадающие на обрабатываемую поверхность. При соударении с поверхностью они приобретают форму диска радиусом до 100 мкм, остывая на подложке со скоростью до 10⁸ К/с. Это приводит к формированию в каплях неравновесной структуры пересыщенного твердого раствора. Последующая термическая обработка покрытия может вызывать распад раствора с выделением упрочняющих фаз с соответствующим повышением микротвердости покрытия

    Pulse electrothermal plasma accelerators and its application in scientific researches

    Get PDF
    This paper presents the pulse electrothermal plasma accelerator erosion type. Formation of dense plasma bunches occurs under atmospheric pressure through the development of high-current arc discharge in a cylindrical channel bounded by dielectric walls. Mode of operation accelerator is hydrodynamic. It is demonstrated the possibility use it to obtain microsecond high-current electron beams without vacuum conditions, the synthesis of nanoscale materials, the excitation of elastic pulses in the fluid.Розглянуто імпульсний електротермічний прискорювач плазми ерозійного типу. Формування згустків щільної плазми відбувається при атмосферному тиску за рахунок реалізації потужнострумового дугового розряду в циліндричному каналі, обмеженому діелектричними стінками. Режим роботи прискорювача гідродинамічний. Продемонстрована можливість його використання для отримання мікросекундних сильнострумових електронних пучків поза вакуумних умов, синтезу наноматеріалів, збудження пружних імпульсів у рідині.Описан импульсный электротермический плазменный ускоритель эрозионного типа. Формирование концентрированных плазменных сгустков происходит при атмосферном давлении за счёт развития сильноточного дугового разряда в цилиндрическом канале, ограниченном диэлектрическими стенками. Режим работы ускорителя гидродинамический. Продемонстрирована возможность его использования для получения микросекундных сильноточных электронных пучков вне вакуумных условий, синтеза наноразмерных материалов, возбуждения упругих импульсов в жидкости

    Збудження плазмовими утвореннями гідроакустичних хвилеводів

    Get PDF
    Fedun V.I. Excitation by plasma formations of hydroacoustic waveguides. – Manuscript. Thesis on competition of a scientific degree of the candidate of sciences on a specialty 01.04.08 – plasma physics. - V.N. Karazin Kharkiv National University, Kharkiv. – 2019. The thesis is devoted to the solution of the actual scientific problem, which consists in the establishment of mechanisms and pecualirities of formation and interaction of powerful pulsed fluxes of plasma with fluid, the excitation of elastic waves by plasma flows and their propagation in a liquid waveguide, which was practically used for the intensification of oil and gas production. The mathematical model of excitation by a plasma jet of elastic impulses in acoustic liquid waveguides with cylindrical geometry is proposed and substantiated. The mathematical modeling determines the dynamics of the vapor-gas cavity in in the hydroacoustic waveguide and the parameters of the emitted pulse. It is shown for the first time that a solitary compression pulse is excited in the waveguide if the cavity energy exceeds a certain critical value. This value is determined both by the properties of the liquid and by the injection conditions of the plasma. It is shown that the emitted pulse is unipolar, that is, there is only a compression pulse and there is no extension pulse. The analysis of the model showed that, with the piston expansion of the cavity, virtually all work on the liquid is converted into acoustic energy, and the transformation efficiency of plasma energy into the elastic energy of the liquid can reach 30%. On the basis of direct and inverse Fourier transforms, a method for calculating the impulse fading in a long waveguide has been developed. It was assumed that each harmonic decreases with the corresponding attenuation coefficient only due to the viscosity of the wall layer.У дисертації вирішено актуальну наукову задачу встановлення механізмів і закономірностей формування і взаємодії потужних імпульсних потоків плазми з рідиною, збудження пружних хвиль і їх поширення в рідинному хвилеводі. В роботі розроблено нову конструкцію електротермічного імпульсного прискорювача, яка забезпечує максимальну ефективність передачі енергії від ємнісного накопичувача в плазмові утворення. Експериментально-аналітичним шляхом встановлено, що розроблений прискорювач генерує плазму з температурою до 1,5 еВ при тиску, що сягає 100 атм. Показано, що генерація плазмоутворюючого газу в прискорювачі відбувається в основному за рахунок абляція матеріалу стінки капіляру. Розроблено математичну модель роботи прискорювача при генерації пружних імпульсів в середовищі з циліндричної геометрією та досліджено параметри випромінюваних імпульсів. Запропоновано і експериментально підтверджено на хвилеводах складної конфігурації (свердловинах) довжиною до 4200 м метод розрахунку затухання пружного імпульсу. Розроблено методику і апаратуру для генерації акустичних полів за допомогою плазмового прискорювача, використання яких в умовах діючих газонафтових свердловин забезпечило підвищення їх продуктивності в 1,8-47,3 разів – по нафті та в 1,3-2,9 разів – по газу, що забезпечило отримання економічного ефекту в розмірі 310 тис. грн. (в цінах 2010 року)

    Структурний і фазово-елементний розподіл у імпульсному плазмовому покритті, отриманому з використанням твердосплавного катоду

    No full text
    Метою даної роботи є дослідження мікроструктурних особливостей покриття, одержаного імпульсно-плазмовою обробкою з використанням твердого сплаву WC-TiC-Со (Т15К6) у якості розхідного (еродуючого) електрода. Покриття наносили на низьколеговану конструкційну сталь 75Г1 за допомогою електротермічного аксіального плазмового прискорювача з потужністю дугового розряду до 20 МВт. В роботі використали мікроскопічний аналіз (за допомогою скандувальних мікроскопів Quanta FEG 650 FEI та Ultra-55 Carl Zeiss), енергодисперсійну спектроскопію (JED-2300, JEOL) та вимірювання мікротвердості (FM-300, Future-Tech Corp.) при навантаженні 20 г. Було встановлено, що після 10 плазмових імпульсів на поверхні сталі утворилось покриття товщиною 95-125 мм, а між покриттям та основою виник модифікований сталевий шар товщиною 33-40 мкм. Покриття складалось із матриці зі структурою високовуглецевого мартенситу або суміші мартенситу і залишкового аустеніту з мікротвердістю 415-977 HV (середнє значення 707 ± 113 HV). В межах матриці виявлено випадково розташовані глобулярні карбіди, збагачені вольфрамом (W,M)C або титаном (Ti,M)C діаметром 0,1-9,1 мм. Загальна об’ємна частка карбідів становила 15 %. EDS дослідження показало, що карбіди одночасно вміщували як вольфрам, так і титан, тобто вони не були "відірвані" з катоду і перенесені плазмовим потоком, а утворились in situ із рідини при кристалізації покриття. Матеріальний вклад катоду в формування покриття не перевищив 17 %, що пояснюється незначною ерозією твердого сплаву через високу температуру плавлення карбідів WC і TiC. Покриття в основному складалося з продуктів ерозії сталевого електроду (аноду) плазмового прискорювача. Матриця покриття виявилась легованою рядом елементів (W, Ti, Co, Cu), які еродували з поверхні катоду під час його плавлення та випаровування під дією високострумового розряду в камері прискорювача.The object of this work is to study microstructural features of the coating obtained by pulsed-plasma deposition using cemented carbide WC-TiC-Со as an eroded electrode. The coating was deposited employing an electro-thermal axial plasma accelerator involving a pulse arc discharge with the power reached 20 MW. Cemented carbide (an alloy of T15K6 grade) was used as a tip of the cathode to be eroded under the discharge. The substrate material was low-alloyed structural steel 75Mn1. The investigations included scanning electron microscopy observation (Quanta FEG 650 FEI, Ultra-55 Carl Zeiss), energy-dispersive Xray spectroscopy (JED-2300, JEOL) and microhardness measurement (FM-300, Future-Tech Corp.) under the load of 20 g. It was shown that after 10 plasma impulses the coating of 95-125 µm thick was obtained tightly adjusted to the modified substrate layer. The coating consisted of high-carbon martensite or martensite/retained austenite matrix with a microhardness of 415-977 HV (mean value of 707 ± 113 HV) and of randomly distributed 2.1 vol. % globular carbides (W,M)C and (Ti,M)C of 0.2-8.5 µm diameter. EDS study revealed that the carbides were alloyed with tungsten and titanium both. It allowed to conclude that carbides were not transferred by plasma flux but they crystallized in situ from the melt deposited on the substrate surface. The contribution of cemented carbide to the coating formation was limited by 17 % which was explained by low cemented carbide erosion caused by the high temperature of carbides WC and TiC melting. The coating was mostly composed of the product of the erosion of a steel anode. The matrix was alloyed with the elements (W, Ti, Co, Cu), released from the cathode during its melting/evaporation under the high-current discharge

    Модифікація поверхні сірого чавуну імпульсно-плазмовим осадженням та подальшим лазерним оплавленням

    No full text
    Метою даної роботи є дослідження мікроструктури та зносостійкості сірого чавуну, поверхнево модифікованого імпульсно-плазмовим нанесенням покриття з подальшим плавленням лазерним променем. Композиційне покриття 50 об. % WC + 50 об. % Al-бронзи товщиною 85-135 мкм було нанесено із застосуванням електротермічного аксіального плазмового прискорювача плазми (10 плазмових імпульсів із напругою розряду 4 кВ). Після нанесення покриття поверхню оплавили скануванням інфрачервоним лазерним променем з довжиною хвилі 1064 нм. При цьому застосували волоконний лазер TruFiber 400 (TRUMPF), діаметр плями променю становив 0,5 мм, швидкість сканування 0,5 мм·с – 1, потужність 400 Вт. В роботі застосували мікроструктурний аналіз (скануючий електронний мікроскоп JSM-6510 JEOL), енергодисперсійну рентгенівську спектроскопію (EDS детектор JED-2300 JEOL), трибологічні випробування (трибометр Мікрон-трибо) та вимірювання мікротвердості при навантаженні 50 г (мікротвердомір FM-300, Future-Tech Corp.). В результаті лазерного оплавлення на глибину до 600 мкм, яке супроводжувалось поверхневим легуванням чавуну міддю та вольфрамом, мікроструктура чавуну змінилась з ферит + пластинчастий графіт на ледебурітоподібну карбідну евтектику з глобулярним включеннями ɛ-міді. Карбідна евтектика складалася з дисперсних дендритів із перлітною структурою, розгалужених в матриці цементитного карбіду. У поперечному перерізі мікроструктура змінювалась градієнтно від повністю оплавленої зони до перехідної карбідо-графітної зони і далі до зон термічного впливу з перлітною або феритоперлітною структурою загальною шириною до 1250 мкм. Мікротвердість оплавленої зони становила 900-1000 HV50, що в 5 разів вище за вихідну мікроструктуру чавуну. Подвійна поверхнева обробка збільшила зносостійкість сірого чавуну в 15 разів порівняно зі структурою ферит + графіт. В статті обговорюється вплив міді та вольфраму на формування структури сірого чавуну при лазерному оплавленні.The object of this work is to study the microstructure and wear behavior of grey cast iron superficially modified by pulsed-plasma deposition of the coating and subsequent laser beam melting. The coating 50 vol. % WC + 50 vol. % Al-bronze of 85-135 µm width was deposited employing an electrothermal axial plasma accelerator with ten pulses under the discharge voltage of 4 kV. The coated surface was subsequently melted by infrared fiber laser TruFiber 400 (TRUMPF) with a beam wavelength of 1064 nm (beam spot was 0.5 mm, scanning velocity was 0.5 mm·s – 1, power was 400 W). The investigations included scanning electron microscopy observation (JSM-6510 JEOL), energy-dispersive X-ray spectroscopy (JED2300, JEOL), tribological testing (tribometer Micron-tribo) and microhardness measurement (FM-300, Future-Tech Corp.) under the load of 0.05 kg. After the deposition/laser melting to a depth of up to 600 µm, the surface was modified from ferrite/lamellar graphite structure to Ledeburite-like eutectic/ɛ-copper precipitates structure. The carbide eutectic consisted of fine pearlitic dendrites embedded into a cementite matrix. The structural gradient from fully remelted zone to transitional (carbide/graphite) zone and further to heat-affected zones (with pearlite and ferrite/pearlite matrix structure) was revealed in the cross-section to reach 1250 µm in total width. The microhardness of the remelted zone was measured as 900-1000 HV50 to be 5 times higher than that of unmodified structure. The double surface treatment increased the scratch wear resistance of a modified grey cast iron by 15 times as compared to the ferrite/graphite substrate. The effect of copper and tungsten on laser-induced structure formation in grey cast iron is discussed
    corecore