36 research outputs found

    Scintillator ageing of the T2K near detectors from 2010 to 2021

    Get PDF
    The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9–2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3–5.4% per year, while the short component of the attenuation length did not show any conclusive degradation

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    SuperFGD prototype time resolution studies

    No full text
    The SuperFGD will be a part of the ND280 near detector of the T2K and Hyper Kamiokande projects, that will help to reduce systematic uncertainties related with neutrino flux and cross-section modeling. The upgraded ND280 will be able to perform a full exclusive reconstruction of the final state from neutrino-nucleus interactions, including measurements of low momentum protons, pions and, for the first time, event-by event measurements of neutron kinematics. The time resolution defines the neutron energy resolution. We present the results of time resolution measurements made with the SuperFGD prototype that consists of 9216 plastic scintillator cubes (cube size is 1 cm3^3) readout with 1728 wavelength-shifting fibers going along three orthogonal directions. We use data from the muon beam exposure at CERN. The time resolution of 0.97 ns was obtained for one readout channel after implementing the time calibration with a correction for the time-walk effect. The time resolution improves with energy deposited in a scintillator cube. Averaging two readout channels for one scintillator cube improves the time resolution to 0.68 ns which means that signals in different channels are not synchronous. Therefore the contribution from the time recording step of 2.5 ns is averaged as well. Averaging time values from N channels improves the time resolution by 1/N\sim 1/\sqrt{N}. Therefore a very good time resolution should be achievable for neutrons since neutron recoils hit typically several scintillator cubes and in addition produce larger amplitudes than muons. Measurements performed with a laser and a wide-bandwidth oscilloscope demonstrated that the time resolution obtained with the muon beam is not far from its expected limit. The intrinsic time resolution of one channel is 0.67 ns for signals of 56 photo-electron typical for minimum ionizing particles

    SuperFGD prototype time resolution studies

    No full text
    The SuperFGD will be a part of the ND280 near detector of the T2K and Hyper Kamiokande projects, that will help to reduce systematic uncertainties related with neutrino flux and cross-section modeling. The upgraded ND280 will be able to perform a full exclusive reconstruction of the final state from neutrino-nucleus interactions, including measurements of low momentum protons, pions and, for the first time, event-by event measurements of neutron kinematics. The time resolution defines the neutron energy resolution. We present the results of time resolution measurements made with the SuperFGD prototype that consists of 9216 plastic scintillator cubes (cube size is 1 cm3^3) readout with 1728 wavelength-shifting fibers going along three orthogonal directions. We use data from the muon beam exposure at CERN. The time resolution of 0.97 ns was obtained for one readout channel after implementing the time calibration with a correction for the time-walk effect. The time resolution improves with energy deposited in a scintillator cube. Averaging two readout channels for one scintillator cube improves the time resolution to 0.68 ns which means that signals in different channels are not synchronous. Therefore the contribution from the time recording step of 2.5 ns is averaged as well. Averaging time values from N channels improves the time resolution by 1/N\sim 1/\sqrt{N}. Therefore a very good time resolution should be achievable for neutrons since neutron recoils hit typically several scintillator cubes and in addition produce larger amplitudes than muons. Measurements performed with a laser and a wide-bandwidth oscilloscope demonstrated that the time resolution obtained with the muon beam is not far from its expected limit. The intrinsic time resolution of one channel is 0.67 ns for signals of 56 photo-electron typical for minimum ionizing particles
    corecore