44 research outputs found

    Beringian Standstill and Spread of Native American Founders

    Get PDF
    Native Americans derive from a small number of Asian founders who likely arrived to the Americas via Beringia. However, additional details about the intial colonization of the Americas remain unclear. To investigate the pioneering phase in the Americas we analyzed a total of 623 complete mtDNAs from the Americas and Asia, including 20 new complete mtDNAs from the Americas and seven from Asia. This sequence data was used to direct high-resolution genotyping from 20 American and 26 Asian populations. Here we describe more genetic diversity within the founder population than was previously reported. The newly resolved phylogenetic structure suggests that ancestors of Native Americans paused when they reached Beringia, during which time New World founder lineages differentiated from their Asian sister-clades. This pause in movement was followed by a swift migration southward that distributed the founder types all the way to South America. The data also suggest more recent bi-directional gene flow between Siberia and the North American Arctic

    Reconstructing Native American Population History

    Get PDF
    The peopling of the Americas has been the subject of extensive genetic, archaeological and linguistic research; however, central questions remain unresolved1–5. One contentious issue is whether the settlement occurred via a single6–8 or multiple streams of migration from Siberia9–15. The pattern of dispersals within the Americas is also poorly understood. To address these questions at higher resolution than was previously possible, we assembled data from 52 Native American and 17 Siberian groups genotyped at 364,470 single nucleotide polymorphisms. We show that Native Americans descend from at least three streams of Asian gene flow. Most descend entirely from a single ancestral population that we call “First American”. However, speakers of Eskimo-Aleut languages from the Arctic inherit almost half their ancestry from a second stream of Asian gene flow, and the Na-Dene-speaking Chipewyan from Canada inherit roughly one-tenth of their ancestry from a third stream. We show that the initial peopling followed a southward expansion facilitated by the coast, with sequential population splits and little gene flow after divergence, especially in South America. A major exception is in Chibchan-speakers on both sides of the Panama Isthmus, who have ancestry from both North and South America

    Genomic analyses inform on migration events during the peopling of Eurasia.

    Get PDF
    High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.Support was provided by: Estonian Research Infrastructure Roadmap grant no 3.2.0304.11-0312; Australian Research Council Discovery grants (DP110102635 and DP140101405) (D.M.L., M.W. and E.W.); Danish National Research Foundation; the Lundbeck Foundation and KU2016 (E.W.); ERC Starting Investigator grant (FP7 - 261213) (T.K.); Estonian Research Council grant PUT766 (G.C. and M.K.); EU European Regional Development Fund through the Centre of Excellence in Genomics to Estonian Biocentre (R.V.; M.Me. and A.Me.), and Centre of Excellence for Genomics and Translational Medicine Project No. 2014-2020.4.01.15-0012 to EGC of UT (A.Me.) and EBC (M.Me.); Estonian Institutional Research grant IUT24-1 (L.S., M.J., A.K., B.Y., K.T., C.B.M., Le.S., H.Sa., S.L., D.M.B., E.M., R.V., G.H., M.K., G.C., T.K. and M.Me.) and IUT20-60 (A.Me.); French Ministry of Foreign and European Affairs and French ANR grant number ANR-14-CE31-0013-01 (F.-X.R.); Gates Cambridge Trust Funding (E.J.); ICG SB RAS (No. VI.58.1.1) (D.V.L.); Leverhulme Programme grant no. RP2011-R-045 (A.B.M., P.G. and M.G.T.); Ministry of Education and Science of Russia; Project 6.656.2014/K (S.A.F.); NEFREX grant funded by the European Union (People Marie Curie Actions; International Research Staff Exchange Scheme; call FP7-PEOPLE-2012-IRSES-number 318979) (M.Me., G.H. and M.K.); NIH grants 5DP1ES022577 05, 1R01DK104339-01, and 1R01GM113657-01 (S.Tis.); Russian Foundation for Basic Research (grant N 14-06-00180a) (M.G.); Russian Foundation for Basic Research; grant 16-04-00890 (O.B. and E.B); Russian Science Foundation grant 14-14-00827 (O.B.); The Russian Foundation for Basic Research (14-04-00725-a), The Russian Humanitarian Scientific Foundation (13-11-02014) and the Program of the Basic Research of the RAS Presidium “Biological diversity” (E.K.K.); Wellcome Trust and Royal Society grant WT104125AIA & the Bristol Advanced Computing Research Centre (http://www.bris.ac.uk/acrc/) (D.J.L.); Wellcome Trust grant 098051 (Q.A.; C.T.-S. and Y.X.); Wellcome Trust Senior Research Fellowship grant 100719/Z/12/Z (M.G.T.); Young Explorers Grant from the National Geographic Society (8900-11) (C.A.E.); ERC Consolidator Grant 647787 ‘LocalAdaptatio’ (A.Ma.); Program of the RAS Presidium “Basic research for the development of the Russian Arctic” (B.M.); Russian Foundation for Basic Research grant 16-06-00303 (E.B.); a Rutherford Fellowship (RDF-10-MAU-001) from the Royal Society of New Zealand (M.P.C.)

    Bioethical issues of preventing hereditary diseases with late onset in the Sakha Republic (Yakutia)

    No full text
    Background: Prenatal diagnosis of congenital and hereditary diseases is a priority for the development of medical technologies in Russia. However, there are not many published research results on bioethical issues of prenatal DNA testing. Objective: The main goal of the article is to describe some of the bioethical aspects of prenatal DNA diagnosis of hereditary diseases with late onset in genetic counselling practice in the Sakha Republic (Yakutia) – a far north-eastern region of Russia. Methods: The methods used in the research are genetic counselling, invasive chorionic villus biopsy procedures, molecular diagnosis, social and demographic characteristics of patients. Results: In 10 years, 48 (76%) pregnant women from families tainted with hereditary spinocerebellar ataxia type 1 and 15 pregnant women from families with myotonic dystrophy have applied for medical and genetic counselling in order to undergo prenatal DNA testing. The average number of applications is 7–8 per year. There are differences in prenatal genetic counselling approaches. Conclusion: It is necessary to develop differentiated ethical approaches depending on the mode of inheritance, age of manifestation, and clinical polymorphism of hereditary disease

    Association of arginine vasopressin with low atrial natriuretic peptide levels, left ventricular remodelling, and outcomes in adults with and without heart failure

    Get PDF
    AIMS: The arginine vasopressin (AVP) pathway has been extensively studied in heart failure (HF) with reduced ejection fraction (HFrEF), but less is known about AVP in HF with preserved EF (HFpEF). Furthermore, the association between AVP and atrial natriuretic peptide (ANP, a well-known inhibitor of AVP secretion) in HF is unknown. METHODS AND RESULTS: We studied subjects with HFpEF (n = 28) and HFrEF (n = 25) and without HF (n = 71). Left ventricular (LV) mass and left atrial (LA) volumes were measured with cardiac magnetic resonance imaging. Arginine vasopressin and ANP were measured with enzyme-linked immunosorbent assay. Arginine vasopressin levels were significantly greater in HFpEF [0.96 pg/mL; 95% confidence interval (CI) = 0.83-1.1 pg/mL] compared with subjects without HF (0.69 pg/mL; 95% CI = 0.6-0.77 pg/mL; P = 0.0002). Heart failure with preserved ejection fraction (but not HFrEF) was a significant predictor of higher AVP after adjustment for potential confounders. Arginine vasopressin levels were independently associated with a greater LA volume and also paradoxically, with lower ANP levels. Key independent correlates of higher AVP were the presence of HFpEF (standardized beta = 0.32; 95% CI = 0.09-0.56; P = 0.0073) and the ANP/LA volume ratio (standardized beta = -0.23; 95% CI = -0.42 to -0.04; P = 0.0196). Arginine vasopressin levels were independently associated with LV mass (beta = 0.26; 95% CI = 0.09-0.43; P = 0.003) and with an increased risk of death or HF admissions during follow-up (hazard ratio = 1.61; 95% CI = 1.13-2.29; P = 0.008). CONCLUSIONS: Arginine vasopressin is increased in HFpEF and is associated with LV hypertrophy and poor outcomes. Higher AVP is associated with the combination of LA enlargement and paradoxically low ANP levels. These findings may indicate that a relative deficiency of ANP (an inhibitor of AVP secretion) in the setting of chronically increased LA pressure may contribute to AVP excess

    A Systematic Review and Meta-Analysis of Free Triiodothyronine (FT3) Levels in Humans Depending on Seasonal Air Temperature Changes: Is the Variation in FT3 Levels Related to Nonshivering Thermogenesis?

    No full text
    Thyroid hormones play a crucial role in regulating normal development, growth, and metabolic function. However, the controversy surrounding seasonal changes in free triiodothyronine (FT3) levels remains unresolved. Therefore, the aim of this study was to conduct a systematic review and meta-analysis of variations in FT3 levels in relation to seasonal air temperatures in the context of current knowledge about its role in nonshivering thermogenesis. Ten eligible articles with a total of 336,755 participants were included in the meta-analysis. The studies were categorized into two groups based on the air temperature: “Cold winter”, where the winter temperature fell below 0 °C, and “Warm winter”, where the winter temperature was above 0 °C. The analysis revealed that in cold regions, FT3 levels decreased in winter compared to summer (I2 = 57%, p 2 = 28%, p < 0.001). These findings suggest that seasonal variations in FT3 levels are likely to be influenced by the winter temperature. Considering the important role of the FT3 in the nonshivering thermogenesis process, we assume that this observed pattern is probably related to the differences in use of thyroid hormones in the brown adipose tissue during adaptive thermogenesis, which may depend on intensity of cold exposure

    Relationships between Uncoupling Protein Genes <i>UCP1</i>, <i>UCP2</i> and <i>UCP3</i> and Irisin Levels in Residents of the Coldest Region of Siberia

    No full text
    Currently, it is known that irisin can participate in the processes of thermoregulation and browning of adipose tissue, and, therefore, it is possible that it is involved in the microevolutionary mechanisms of adaptation to a cold. The aim of this study is to investigate the relationship between the uncoupling protein genes (UCP1, UCP2, UCP3) and the irisin levels in the residents of the coldest region of Siberia. The sample consisted of 279 Yakut people (185 females, 94 males, average age 19.8 ± 2.03 years). The females plasma irisin concentration was 8.33 ± 2.74 mcg/mL and the males was 7.76 ± 1.86 mcg/mL. Comparative analysis of irisin levels with the genotypes of six studied SNP-markers in females revealed a significant association of irisin with rs1800849-UCP3. The TT genotype of rs1800849 was associated with elevated levels of irisin (p = 0.01). It was also found that this TT genotype in females was associated with reduced weight and height (p = 0.03). We searched for natural selection signals for the T-allele rs1800849-UCP3; as a result of which, it was found that this allele has a significantly high frequency of distribution in northern (45%, CI: 0.42–0.484) compared with southern Asian populations (28%, CI: 0.244–0.316) (p = 0.01). The results obtained indicate the probable involvement of irisin and the UCP3 gene in thermoregulation, and the spread of its allelic variants is probably related to adaptation to a cold climate
    corecore