105 research outputs found

    In-Depth Characterisation of Retinal Pigment Epithelium (RPE) Cells Derived from Human Induced Pluripotent Stem Cells (hiPSC)

    Get PDF
    Induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) has widely been appreciated as a promising tool to model human ocular disease emanating from primary RPE pathology. Here, we describe the successful reprogramming of adult human dermal fibroblasts to iPSCs and their differentiation to pure expandable RPE cells with structural and functional features characteristic for native RPE. Fibroblast cultures were established from skin biopsy material and subsequently reprogrammed following polycistronic lentiviral transduction with OCT4, SOX2, KLF4 and L-Myc. Fibroblast-derived iPSCs showed typical morphology, chromosomal integrity and a distinctive stem cell marker profile. Subsequent differentiation resulted in expandable pigmented hexagonal RPE cells. The cells revealed stable RNA expression of mature RPE markers RPE65, RLBP and BEST1. Immunolabelling verified localisation of BEST1 at the basolateral plasma membrane, and scanning electron microscopy showed typical microvilli at the apical side of iPSC-derived RPE cells. Transepithelial resistance was maintained at high levels during cell culture indicating functional formation of tight junctions. Secretion capacity was demonstrated for VEGF-A. Feeding of porcine photoreceptor outer segments revealed the proper ability of these cells for phagocytosis. IPSC-derived RPE cells largely maintained these properties after cryopreservation. Together, our study underlines that adult dermal fibroblasts can serve as a valuable resource for iPSC-derived RPE with characteristics highly reminiscent of true RPE cells. This will allow its broad application to establish cellular models for RPE-related human diseases

    Cancer-associated cells release citrate to support tumour metastatic progression

    Get PDF
    Citrate is important for lipid synthesis and epigenetic regulation in addition to ATP production. We have previously reported that cancer cells import extracellular citrate via the pmCiC transporter to support their metabolism. Here, we show for the first time that citrate is supplied to cancer by cancer-associated stroma (CAS) and also that citrate synthesis and release is one of the latter’s major metabolic tasks. Citrate release from CAS is controlled by cancer cells through cross-cellular communication. The availability of citrate from CAS regulated the cytokine profile, metabolism and features of cellular invasion. Moreover, citrate released by CAS is involved in inducing cancer progression especially enhancing invasiveness and organ colonisation. In line with the in vitro observations, we show that depriving cancer cells of citrate using gluconate, a specific inhibitor of pmCiC, significantly reduced the growth and metastatic spread of human pancreatic cancer cells in vivo and muted stromal activation and angiogenesis. We conclude that citrate is supplied to tumour cells by CAS and citrate uptake plays a significant role in cancer metastatic progression

    Erosive cola-based drinks affect the bonding to enamel surface: an in vitro study

    Get PDF
    Objective: This study aimed to assess the impact of in vitro erosion provoked by different cola-based drinks (Coke types), associated or not with toothbrushing, to bonding to enamel. Material and methods: Forty-six bovine enamel specimens were prepared and randomly assigned into seven groups (N=8): C- Control (neither eroded nor abraded), ERO-RC: 3x/1-minute immersion in Regular Coke (RC), ERO-LC: 3x/1-minute immersion in Light Coke (LC), ERO-ZC: 3x/1-minute immersion in Zero Coke (ZC) and three other eroded groups, subsequently abraded for 1-minute toothbrushing (EROAB-RC, EROAB-LC and EROAB-ZC, respectively). After challenges, they were stored overnight in artificial saliva for a total of 24 hours and restored with Adper Single Bond 2/Filtek Z350. Buildup coronal surfaces were cut in 1 mm2 -specimens and subjected to a microtensile test. Data were statistically analyzed by two-way ANOVA/Bonferroni tests (α=0.05). Failure modes were assessed by optical microscopy (X40). The Interface of the restorations were observed using Confocal Laser Scanning Microscopy (CLSM). Results: All tested cola-based drinks significantly reduced the bond strength, which was also observed in the analyses of interfaces. Toothbrushing did not have any impact on the bond strength. CLSM showed that except for Zero Coke, all eroded specimens resulted in irregular hybrid layer formation. Conclusions: All cola-based drinks reduced the bond strength. Different patterns of hybrid layers were obtained revealing their impact, except for ZC

    Islet transplantation: present clinical situation and future aspects.

    No full text
    Beta-cell replacement either by pancreatic organ or islet cell transplantation is the only treatment to achieve an insulin-independent, normoglycemic state and to avoid hypoglycemic episodes in patients with type 1 diabetes mellitus. This article will review the state-of-the-art in clinical islet cell transplantation at the dawn of the new millennium and will provide an outlook on the basis of extended personal experience
    corecore