10 research outputs found

    Persistent Megalocystic Ovary Following in Vitro Fertilization in a Postpartum Patient with Polycystic Ovarian Syndrome

    Get PDF
    SummaryObjectiveOvarian hyperstimulation syndrome (OHSS) is more severe when pregnancy occurs, as the developing pregnancy produces human chorionic gonadotropin, which stimulates the ovary's persistent growth. If no pregnancy occurs, the syndrome will typically resolve within 1 week. In a maintained pregnancy, slow resolution of symptoms usually occurs over 1-2 months.Case ReportA 31-year-old woman, gravida 2, para 1, aborta 1, with polycystic ovary syndrome underwent in vitro fertilization (IVF) with clomiphene citrate and follicle-stimulating hormone/gonadotropin releasing hormone-antagonist stimulation. During transvaginal oocyte retrieval, enlarged bilateral ovaries were noted. She had an episode of OHSS after IVF/embryo transfer, for which paracentesis was performed three times. Pregnancy was achieved. Throughout antenatal examinations, bilateral ovaries were enlarged. She delivered a healthy baby by cesarean section at term. However, 1 month after delivery, the bilateral ovary had not shrunk, and levels of tumor markers CA125 and CA199 were 50.84 and 41.34 U/mL, respectively. At laparotomy for suspected malignancy, both adnexae formed “kissing ovaries”, which were multinodulated with yellow serous fluid. Specimens from wedge resection submitted for frozen section showed a benign ovarian cyst. The final pathology report showed bilateral follicle cysts.ConclusionWith the increasing use of gonadotropins in the management of infertility, ovarian enlargement secondary to hyperstimulation is common. Generally, symptoms appear between the 6th and 13th weeks of pregnancy and disappear thereafter. The hyperstimulated ovary often subsides after the first trimester. This case is unusual as the megalocystic ovary persisted after delivery. To the best of our knowledge, we report the first case of enlarged bilateral ovaries persisting 2 months after delivery

    Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study

    Get PDF
    Telomere deregulation is a hallmark of cancer. Telomere length measured in lymphocytes (LTL) has been shown to be a risk marker for several cancers. For pancreatic ductal adenocarcinoma (PDAC) consensus is lacking whether risk is associated with long or short telomeres. Mendelian randomization approaches have shown that a score built from SNPs associated with LTL could be used as a robust risk marker. We explored this approach in a large scale study within the PANcreatic Disease ReseArch (PANDoRA) consortium. We analyzed 10 SNPs (ZNF676-rs409627, TERT-rs2736100, CTC1-rs3027234, DHX35-rs6028466, PXK-rs6772228, NAF1-rs7675998, ZNF208-rs8105767, OBFC1-rs9420907, ACYP2-rs11125529 and TERC-rs10936599) alone and combined in a LTL genetic score (“teloscore”, which explains 2.2% of the telomere variability) in relation to PDAC risk in 2,374 cases and 4,326 controls. We identified several associations with PDAC risk, among which the strongest were with the TERT-rs2736100 SNP (OR = 1.54; 95%CI 1.35–1.76; p = 1.54 × 10−10) and a novel one with the NAF1-rs7675998 SNP (OR = 0.80; 95%CI 0.73–0.88; p = 1.87 × 10−6, ptrend = 3.27 × 10−7). The association of short LTL, measured by the teloscore, with PDAC risk reached genome-wide significance (p = 2.98 × 10−9 for highest vs. lowest quintile; p = 1.82 × 10−10 as a continuous variable). In conclusion, we present a novel genome-wide candidate SNP for PDAC risk (TERT-rs2736100), a completely new signal (NAF1-rs7675998) approaching genome-wide significance and we report a strong association between the teloscore and risk of pancreatic cancer, suggesting that telomeres are a potential risk factor for pancreatic cancer

    Preliminary experimental results from a linear reciprocating magnetic refrigerator prototype

    No full text
    A linear reciprocating magnetic refrigerator prototype was designed and built with the aid of an industrial partner. The refrigerator is based on the Active Magnetic Regenerative cycle, and exploits two regenerators working in parallel. The active material is Gadolinium in plates, 0.8 mm thick, for a total mass of 0.36 kg. The device is described and results about magnetic field and temperature span measurements are presented. The designed permanent magnet structure, based on an improved cross-type arrangement, generates a maximum magnetic field intensity of 1.55 T in air, over a gap of (13 50 100) mm3. The maximum temperature span achieved is 5.0 K, in a free run condition

    An approach to energy saving assessment of solar assisted heat pumps for swimming pool water heating

    No full text
    A steady state off-design model of a Water Solar Assisted Heat Pump (W-SAHP) and the results of monthly-based averaged simulations are presented. The W-SAHP system is arranged with a commercial water- towater heat pump, coupled with unglazed flat plate solar collectors. The study is purposely developed for swimming pools, however most of the analysis criteria and outcomes are valid for any building (user) having hot water needs. Calculations are made for given thermal load and user operating temperatures with reference to the climatic data of all Italian Municipalities, that is degree days (DD) in the range from 700 to 3000, altitude from 0 to 1500m (above sea level), and latitude from 36.5\ub0N to 46.3\ub0N. The primary energy saving capability of the W-SAHP solution, compared to a traditional gas-boiler plant, is analyzed as a function of the DD index of each site. Despite the large spread of climatic and altitude data, the results show that the W-SAHP performance are usually well correlated to DD, which can therefore be assumed as the main independent variable for the energy saving assessment of these systems, and make the results easily extended to other possible geographical locations

    Liquefied natural gas submerged combustion vaporization facilities: process integration with power conversion units

    No full text
    Liquefied natural gas (LNG) vaporization facilities offer an excellent opportunity of primary energy saving by means of integration with power conversion units that is still weakly exploited in actual installations. This work focuses on the evaluation of primary energy saving achievable by the integration of an LNG vaporization facility with a gas turbine and with a cogenerative combined gas-steam power plant. The fuel energy saving ratio is used as the main performance parameter to evaluate the primary energy saving derived by system integration, with respect to conventional submerged combustion vaporization. Twelve possible configurations are analyzed with steady-state calculations. Results show that a primary energy saving greater than 15% with peak values up to 27%, corresponding to 2.98TJ/year, is achievable. The paper shows that the fuel energy saving ratio can be used as a synthetic and effective parameter to estimate the energy-saving potential of different plant configurations. \ua9 2011 John Wiley & Sons, Ltd

    METODO DI IMPIEGO DI TUBI METALLICI NON COIBENTATI COME COLLETTORI DI ENERGIA SOLARE E AMBIENTALE ABBINATI A SISTEMI A POMPA DI CALORE

    No full text
    Metodo di impiego di tubi metallici non coibentati (1) da installarsi direttamente su superfici isolate in esterno ovvero su elementi architettonici di edifici civili ed industriali (quali coperture di tetti, tettoie e coperture in genere), in grado di captare l'energia raggiante del sole, sia direttamente sia indirettamente dalla copertura (4) (operante come superficie estesa aderente al tubo) mediante opportuno impianto idraulico in accoppiamento a pompa di calore (9) (del tipo a compressione di vapore acqua-acqua od acqua aria, ovvero del tipo ad assorbimento, sempre con acqua od altro fluido antigelo circolante nei tubi (1)). La distesa di tubi pu\uf2 sfruttare, oltre all'energia solare, anche le altre fonti exergetiche ambientali quali l'irraggiamento ambientale, la convezione con l'aria, la convezione con l'acqua della pioggia o la potenza termica ottenibile dalla condensazione del vapore contenuto nell'aria ambiente

    Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study.

    No full text
    Telomere deregulation is a hallmark of cancer. Telomere length measured in lymphocytes (LTL) has been shown to be a risk marker for several cancers. For pancreatic ductal adenocarcinoma (PDAC) consensus is lacking whether risk is associated with long or short telomeres. Mendelian randomization approaches have shown that a score built from SNPs associated with LTL could be used as a robust risk marker. We explored this approach in a large scale study within the PANcreatic Disease ReseArch (PANDoRA) consortium. We analyzed 10 SNPs (ZNF676-rs409627, TERT-rs2736100, CTC1-rs3027234, DHX35-rs6028466, PXK-rs6772228, NAF1-rs7675998, ZNF208-rs8105767, OBFC1-rs9420907, ACYP2-rs11125529 and TERC-rs10936599) alone and combined in a LTL genetic score ("teloscore", which explains 2.2% of the telomere variability) in relation to PDAC risk in 2,374 cases and 4,326 controls. We identified several associations with PDAC risk, among which the strongest were with the TERT-rs2736100 SNP (OR = 1.54; 95%CI 1.35-1.76; p = 1.54 × 10-10 ) and a novel one with the NAF1-rs7675998 SNP (OR = 0.80; 95%CI 0.73-0.88; p = 1.87 × 10-6 , ptrend = 3.27 × 10-7 ). The association of short LTL, measured by the teloscore, with PDAC risk reached genome-wide significance (p = 2.98 × 10-9 for highest vs. lowest quintile; p = 1.82 × 10-10 as a continuous variable). In conclusion, we present a novel genome-wide candidate SNP for PDAC risk (TERT-rs2736100), a completely new signal (NAF1-rs7675998) approaching genome-wide significance and we report a strong association between the teloscore and risk of pancreatic cancer, suggesting that telomeres are a potential risk factor for pancreatic cancer
    corecore