55 research outputs found

    A multi-adaptive framework for the crop choice in paludicultural cropping systems

    Get PDF
    The conventional cultivation of drained peatland causes peat oxidation, soil subsidence, nutrient loss, increasing greenhouse gas emissions and biodiversity reduction. Paludiculture has been identified as an alternative management strategy consisting in the cultivation of biomass on wet and rewetted peatlands. This strategy can save these habitats and restore the ecosystem services provided by the peatlands both on the local and global scale. This paper illustrates the most important features to optimise the crop choice phase, which is the crucial point for the success of paludiculture systems. A multi-adaptive framework was proposed. It was based on four points that should be checked to identify suitable crops for paludicultural cropping system: biological traits, biomass production, attitude to cultivation and biomass quality. The main agronomic implications were explored with the help of some results from a plurennial open-field experimentation carried out in a paludicultural system set up in the Massaciuccoli Lake Basin (Tuscany, Italy) and a complete example of the method application was provided. The tested crops were Arundo donax L., Miscanthus × giganteus Greef et Deuter, Phragmites australis L., Populus × canadensis Moench. and Salix alba L. The results showed a different level of suitability ascribable to the different plant species proving that the proposed framework can discriminate the behaviour of tested crops. Phragmites australis L.was the most suitable crop whereas Populus × canadensis Moench and Miscanthus × giganteus Greef et Deuter (in the case of biogas conversion) occupied the last positions in the ranking

    Aboveground Yield and Biomass Quality of Giant Reed (Arundo donax L.) as Affected by Harvest Time and Frequency

    Get PDF
    Giant reed (Arundo donax L.) is a perennial rhizomatous grass producing high biomass yields in temperate and warm climates under rainfed and reduced input conditions. Harvest time and frequency typically affect the productivity and suitability for energy conversion of energy crops. In order to evaluate the effect of different cutting managements on biomass yield and quality of giant reed, three single harvest (SH) and six double harvest (DH) systems were compared. Biomass yield, leaf mass ratio, dry matter (DM), and ash content were assessed for each harvest. Over the 2 years of study, giant reed demonstrated good productivity levels both when harvested once a year and twice a year (about 30 Mg ha−1) without significant differences between the treatments. Regarding double-cut regimes, overall yields were significantly reduced by delaying the second cut from autumn to winter (32.9 vs 30.2 Mg ha−1), and the percentage of the first cut with respect to the overall yield varied from 55 to 80 %. Biomass quality was also significantly affected by harvest time and frequency. The biomass obtained in double harvest systems showed higher average moisture levels (about 40 % DM) and ash concentrations ranging from 4.7 to 8.7 %. In contrast, single harvest systems led to a drier biomass (47–57 % DM) and reduced mineral contents (3.4–4.8 % ash). The feasibility of double-cut management should therefore be considered in terms of the specific giant reed-based supply chain, with particular regards to the storage and conversion technology adopted

    Carbon Budget of an Agroforestry System after Being Converted from a Poplar Short Rotation Coppice

    Get PDF
    Poplar (Populus L. spp.) Short Rotation Coppice systems (SRCs) for bioenergy production are being converted back to arable land. Transitioning to Alley Cropping Systems (ACSs) could be a suitable strategy for integrating former tree rows and arable crops. A field trial (Pisa, Central Italy) was set up with the aim of assessing the C storage of an ACS system based on hybrid poplar and sorghum (Sorghum bicolor L. Moench) and comparing it with that of an SRC cultivation system. The carbon budget at the agroecosystem scale was assessed in the first year of the transition using the net biome production (NBP) approach with a simplified method. The overall NBP for the SRC was positive (96 40 g C m2 year1), highlighting that the system was a net carbon sink (i.e., NBP > 0). However, the ACS registered a net C loss (i.e., NBP < 0), since the NBP was 93 56 g C m2 year1. In the first year of the transition, converting the SRC into an ACS counteracted the potential beneficial eect of C storage in tree belowground biomass due to the high heterotrophic respiration rate recorded in the ACS, which was fostered by the incorporation of residues and tillage disturbance in the alley. Additional years of heterotrophic respiration measurements could allow for an estimate of the speed and extent of C losses

    Assessment of the biochemical methane potential of in-house and outdoor stored pig and dairy cow manure by evaluating chemical composition and storage conditions

    Get PDF
    Biogas production is a suitable option for producing energy from dairy and pig manure types. During manure storage, organic matter degradation results in methane emissions decreasing the potential biogas yield. The present research advances the understanding of the biochemical methane potential (BMP) and the chemical characteristics of manure collected year-round from sequential stages of the liquid manure management chain of commercial dairy cow and pig farms. To this end, manure samples from six livestock farms in Germany were analyzed. The results showed that changes in chemical composition during storage led to a 20.5% decrease in the BMP of dairy manure from the barn to outdoor storage. For fattening pig manure samples, there was a 39.5% decrease in the BMP from intermediate to outdoor storage. An analysis of BMP according to manure age showed that pig manure degrades faster than dairy manure; the importance of promptly feeding manure to the biogas plant in order to avoid significant CH4 emission losses and reduction in energy producing capacity was highlighted. The best BMP predictors for dairy manure were the contents of dry matter, volatile solids and lignin, whereas best BMP predictors for pig manure were dry matter and volatile fatty acid (VFA) content. Prediction models performed well for samples from outdoor storages; refinements for predicting BMP of less aged samples presenting lower chemical variability would be necessary

    Methane Emissions from Livestock Slurry: Effects of Storage Temperature and Changes in Chemical Composition

    Get PDF
    Livestock production contributes to releasing methane into the atmosphere. Liquid manure management offers significant opportunities to reduce these emissions. A better understanding of the factors controlling methane emissions from manure is necessary to select effective mitigation strategies. Our study aimed to identify the influence of storage temperature and the associated change in chemical composition on methane emissions from dairy and fattening pig manure. Storage temperature affects microbial activity and induces changes in chemical composition that are key influences in methane emissions. Dairy and fattening pig manure samples were stored at five different temperatures (5–25 °C) for 90 days in a laboratory-scale experiment to measure the methane production. The chemical composition of the slurry samples was analyzed, and the biochemical methane potential (BMP) tests were performed before and after storage. For pig manure stored at 25 °C and 20 °C, methane emissions accounted for 69.3% and 50.3% of the BMP, respectively. Maximum methane emissions for dairy slurry were observed at 25 °C but remained at a low level. Analyses of the accumulation of volatile fatty acids (VFAs) during storage are presented in few studies, this work revealed a potential inhibition of methane production, where the accumulation of VFAs was most elevated in samples stored at 20 °C and 25 °C. This partly counteracted the increase in methane emissions expected from the higher temperatures. The degree of VFA and dissociated fatty acids accumulation in dairy cattle slurry should be assessed for more accurate estimations of methane emissions from slurry stores

    Identification of representative dairy cattle and fodder crop production typologies at regional scale in Europe

    Get PDF
    European dairy production faces significant economic, environmental, and social sustainability challenges. Given the great diversity of dairy cattle production systems in Europe, region-specific concepts to improve environmental and socioeconomic sustainability are needed. Regionally integrated dairy cattle-crop systems emerge as a more resilient and sustainable alternative to highly specialized farming systems. Identifying different dairy cattle production typologies and their potential interactions with fodder crop production is presented as a step in transitioning to optimized agricultural systems. Currently existing typologies of integrated systems are often insufficient when characterizing structural, socioeconomic, and environmental components of farms. We fill this gap in the literature by identifying, describing, and comparing representative dairy cattle production system typologies and their interrelation with regional fodder crop production at the European regional scale. This is a necessary step to assess the scope for adapted mitigation and sustainability measures in the future. For this purpose, a multivariate statistical approach is applied. We show how different land-use practices, farm structure characteristics, socio-economic attributes, and emission intensities condition dairy production. Furthermore, the diversity of regional fodder crop production systems is demonstrated by analyzing their distribution in Europe. Together with identified typologies, varying degrees of regional specialization in milk production allow for identifying future strategies associated with the application of integrated systems in key European dairy regions. This study contributes to a better understanding of the existing milk production diversity in Europe and their relationship with regional fodder crop production. In addition, we discuss the benefits of integrated systems as a clear, viable, and resilient alternative to ongoing livestock intensification in the European context. Identifying interactions between components of integrated systems will facilitate decision-making, the design and implementation of measures to mitigate climate change, and the promotion of positive socio-economic and environmental interactions

    Thick Does the Trick: Genesis of Ferroelectricity in 2D GeTe-Rich (GeTe)m (Sb2 Te3 )n Lamellae

    Get PDF
    The possibility to engineer (GeTe)(m)(Sb2Te3)n phase-change materials to co-host ferroelectricity is extremely attractive. The combination of these functionalities holds great technological impact, potentially enabling the design of novel multifunctional devices. Here an experimental and theoretical study of epitaxial (GeTe)(m)(Sb2Te3)n with GeTe-rich composition is presented. These layered films feature a tunable distribution of (GeTe)m(Sb2Te3)(1) blocks of different sizes. Breakthrough evidence of ferroelectric displacement in thick (GeTe)m(Sb2Te3)(1) lamellae is provided. The density functional theory calculations suggest the formation of a tilted (GeTe)m slab sandwiched in GeTe-rich blocks. That is, the net ferroelectric polarization is confined almost in-plane, representing an unprecedented case between 2D and bulk ferroelectric materials. The ferroelectric behavior is confirmed by piezoresponse force microscopy and electroresistive measurements. The resilience of the quasi van der Waals character of the films, regardless of their composition, is also demonstrated. Hence, the material developed hereby gathers in a unique 2D platform the phase-change and ferroelectric switching properties, paving the way for the conception of innovative device architectures

    Giant reed (Arundo donax L.) for biogas production: land use saving and nitrogen utilisation efficiency compared with arable crops

    Get PDF
    Aiming to improve the sustainability of biogas supply chains, the research for alternative feedstocks is a key issue and giant reed (Arundo donax L.) is a promising no-food crop to be used in anaerobic digestion. In fact, giant reed is a perennial species characterised by low nutrient requirements and is able to provide promising biogas yields. Its suitability for anaerobic digestion is influenced by harvest time, since plant characteristics vary noticeably along the season. Moreover, ensiling is a storage technique that can assure a good preservation of the biomass over time, but also influence the methane yields. Therefore, the aim of this study was to assess the suitability for biogas production of giant reed silage, according to different cutting regimes, and to evaluate the efficiency in saving land and nitrogen for fuelling biogas plants, in comparison with maize and two sorghum varieties. Methane yields per hectare (Nm3 CH4 ha–1) were determined by multiplying the biochemical methane potential of each substrate by the aboveground biomass of the corresponding crop. The land use coefficient (LU), namely the land needed to fuel one kW power (ha kWe–1), was calculated from the estimated methane yields per hectare. Finally, nitrogen utilisation efficiency (NUtE), which is the ratio between the estimated methane yield and the nitrogen uptake per hectare (Nm3 CH4 kgN–1), was determined for each crop species and according to the harvest time and frequency of giant reed. Overall, a good suitability for ensiling was observed in giant reed. When harvested in September, the crop yielded about 9900 Nm3 CH4 ha–1, while in double harvest systems biomethane was about 12,000 Nm3 CH4 ha–1, +35% and +70% than maize and sorghum respectively. Moreover, giant reed under double harvest management was the most land-conservative option, as LU was about 0.22 ha kWe–1, while in annual crops it was about 0.35 ha kWe–1. The higher NUtE was observed in single harvests (up to 64 Nm3 CH4 kgN–1), while double harvests showed remarkably lower values, averaging 48 Nm3 CH4 kgN–1. Annual crops were less efficient, since NUtE ranged from 28 Nm3 CH4 kgN–1 (maize) to 40 Nm3 CH4 kgN–1 (fibre sorghum). In conclusion, giant reed can be an alternative for biogas making, potentially providing land and nitrogen savings compared with conventional annual crops
    • …
    corecore