1,606 research outputs found

    Analysis of GeV-band gamma-ray emission from SNR RX J1713.7-3946

    Full text link
    RX J1713.7-3946 is the brightest shell-type Supernova remnant (SNR) of the TeV gamma-ray sky. Earlier Fermi-LAT results on low-energy gamma-ray emission suggested that, despite large uncertainties in the background determination, the spectrum is inconsistent with a hadronic origin. We update the GeV-band spectra using improved estimates for the diffuse galactic gamma-ray emission and more than doubled data volume. We further investigate the viability of hadronic emission models for RX J1713.7-3946. We produced a high-resolution map of the diffuse Galactic gamma-ray background corrected for HI self-absorption and used it in the analysis of more than 5~years worth of Fermi-LAT data. We used hydrodynamic scaling relations and a kinetic transport equation to calculate the acceleration and propagation of cosmic-rays in SNR. We then determined spectra of hadronic gamma-ray emission from RX J1713.7-3946, separately for the SNR interior and the cosmic-ray precursor region of the forward shock, and computed flux variations that would allow to test the model with observations. We find that RX J1713.7-3946 is now detected by Fermi-LAT with very high statistical significance, and the source morphology is best described by that seen in the TeV band. The measured spectrum of RX J1713.7-3946 is hard with index gamma=1.53 +/- 0.07, and the integral flux above 500 MeV is F = (5.5 +/- 1.1)e-9 photons/cm^2/s. We demonstrate that scenarios based on hadronic emission from the cosmic-ray precursor region are acceptable for RX J1713.7-3946, and we predict a secular flux increase at a few hundred GeV at the level of around 15% over 10 years, which may be detectable with the upcoming CTA observatory.Comment: 9 pages, accepted for publication in Astronomy & Astrophysic

    SEA WATER TURBIDITY ANALYSIS FROM SENTINEL-2 IMAGES: ATMOSPHERIC CORRECTION AND BANDS CORRELATION

    Get PDF
    Turbidity is a visual property of water, related to the presence of suspended particles in waters. This parameter is measured in different water quality monitoring programmes as it can determine negative environmental effects both on the biotic and abiotic marine ecosystem. Traditional methods, e.g., in situ monitoring, offer high accuracy but provide sparse information in space and time. On the other hand, Earth Observation (EO) techniques have the potential to provide a comprehensive, fast and inexpensive monitoring system to observe the biophysical and biochemical conditions of water bodies. In the present work, a method for seawater turbidity retrieval from Sentinel-2 multispectral optical images, freely available within the EU Copernicus programme, is presented. The study explores different atmospheric correction methods available in open source software (QGIS, GRASS GIS and SNAP), in order to convert Level-1C (L1C) Top-Of-Atmosphere (TOA) images to Level-2A (L2A) Bottom-Of-Atmosphere (BOA), when the latter is not directly available. Once the proper method for atmospheric correction was identified and applied, the correlation between the in situ dataset and the individual bands known to be most sensitive to water turbidity, i.e., blue (B2), green (B3), red (B4) and near infrared (B8 and B8A) bands, were investigated and a linear regression model between selected band values and turbidity was identified

    Spatial interpolation techniques for near real-time mapping of Pressure and Temperature data

    Get PDF
    Among the different techniques for atmosphere monitoring, the GNSS (Global Navigation Satellite System) can provide an innovative contribution (Bevis et al., 1992; Crespi et al., 2004; Sguerso et al., 2013, 2015). The Laboratory of Geomatics, Geodesy and GIS of the University of Genoa has identified a GIS procedure and a simplified physical model to monitor the Precipitable Water Vapour (PWV) content, using data measured by existing infrastructures. The starting points are local estimations of Zenith Total Delay (ZTD) from a GNSS Permanent Stations (PSs) network, a Digital Terrain Model (DTM) and local Pressure (P) and Temperature (T) measurements (Sguerso et al., 2014; Ferrando et al., 2016). The present paper shows the study of the most appropriate interpolation technique for P and T data to create PWV maps in a quick, stable and automatic way, to support the monitoring of intense meteorological events for both a posteriori and near real-time applications. The resulting P and T maps were compared to meteorological re-analysis, to check the reliability of the simplified physical model. Additionally, the Regression Kriging (RK) was employed to evaluate the data correlation with elevation and to study the applicability of the technique

    U.ph.o and mago: Two useful instruments in support of photogrammetric uav survey

    Get PDF
    In emergency and critical scenarios, the UAV could play a key role in accessing unreachable sites in a safe and rapid way, guaranteeing at the same time the necessary accuracy and precision of the survey. In this context, UAV survey campaigns have been performed by the authors in Norcia (Italy), hit by tragic seismic events in August and October 2016. The surveys were motivated by the artistic and historical value of monuments, the need to plan and design the restoring and retrofitting of buildings, and also to quantify and manage the ruins. Goal of such surveys was the description of the structures geometry with a centimetric precision and a high level of reliability. Recently, the authors have conceived two tools, U.Ph.O (Unmanned Photogrammetric Office) and MAGO (Adaptive Mesh for Orthophoto Generation), dedicated to the planning and restitution phases of the survey, respectively. U.Ph.O. and MAGO are here applied to two different buildings in Norcia, i.e. the Civic Tower of Norcia and San Salvatore Church of Campi di Norcia. The former is a standing-out structure, surrounded by the complex of the historical centre, while the latter is located in an isolated site in the countryside. These features make the survey planning and the orthophoto reconstruction completely different, mainly due to the different optimal shooting geometry and the presence or absence of obstructions

    PHOTOGRAMMETRIC PROCESSING AND FRUITION OF PRODUCTS IN OPEN-SOURCE ENVIRONMENT APPLIED TO THE CASE STUDY OF THE ARCHAEOLOGICAL PARK OF POMPEII

    Get PDF
    Abstract. The paper presents the geomatic survey campaign carried out in the Domus V of Pompeii Archaeological site, the photogrammetric processing of the collected images and the following fruition of the deriving products deploying open-source software. Among all the produced results, the orthophotos of the vertical walls of one of the Domus V rooms are made available through a "master/slave" GIS environment, where each orthophoto is uploaded in a "slave" project whose visualization is triggered by querying the corresponding geometry representing the wall in the "master" project. This strategy allows to include the display of the third dimension, i.e., the altimetric one, within a traditional GIS environment, so to constitute a 3D GIS representation. This is particularly useful to realize a catalogue of all the archaeological site in the future to be viewed, queried and exploited also by non-specialists in geomatics or archaeology fields of knowledge

    Genetic Assimilation and Canalisation in the Baldwin Effect

    No full text
    The Baldwin Effect indicates that individually learned behaviours acquired during an organism’s lifetime can influence the evolutionary path taken by a population, without any direct Lamarckian transfer of traits from phenotype to genotype. Several computational studies modelling this effect have included complications that restrict its applicability. Here we present a simplified model that is used to reveal the essential mechanisms and highlight several conceptual issues that have not been clearly defined in prior literature. In particular, we suggest that canalisation and genetic assimilation, often conflated in previous studies, are separate concepts and the former is actually not required for non-heritable phenotypic variation to guide genetic variation. Additionally, learning, often considered to be essential for the Baldwin Effect, can be replaced with a more general phenotypic plasticity model. These simplifications potentially permit the Baldwin Effect to operate in much more general circumstances

    Progetto Terra piĂč Sicura: i rischi geologici e la loro prevenzione spiegati agli studenti delle scuole secondarie di primo grado

    Get PDF
    L'associazione Geologia Senza Frontiere onlus (www.gsf.it) Ăš nata nel 2003 dalla volontĂ  di un gruppo di geologi, ambientalisti e naturalisti di dare una prospettiva comune alle competenze conseguite nell'ambito della ricerca universitaria, dell'attivitĂ  professionale e della cooperazione. Durante l'anno scolastico 2013-2014 Geologia Senza Frontiere ha ideato e realizzato il progetto Terra piĂč Sicura (TpS), volto all'insegnamento dei rischi geologici in scuole secondarie di primo grado di Lazio, Toscana e Veneto. Gli obiettivi del progetto sono stati in particolare l'avvicinamento di studenti ed insegnanti ai problemi della sicurezza del territorio, dei rischi in esso presenti, oltre a come prevenire ed affrontare in maniera consapevole e corretta le emergenze naturali

    Intervalley Scattering in GaAs and InP Probed by Pulsed Far‐Infrared Transmission Spectroscopy

    Get PDF
    The dynamics of photoexcited electrons in GaAs and InP were studied using the transmission of 200‐fs pulses of far‐infrared radiation in the spectral range 15–100 cm−1. Kinetic traces of the infrared transmission as a function of delay between optical excitation and infrared probe show a probe‐limited decrease in transmission followed by a more gradual (0.7–2 ps) drop to a steady value, consistent with the slow return of electrons from high‐mass satellite valleys. Infrared transmission spectra, analyzed in the context of a Drude model, reveal density‐dependent electron mobilities 3–4 times below equilibrium n‐doped values. Electron‐hole collisions likely account for the lower mobility
    • 

    corecore