47 research outputs found

    Progress and Perspectives in the Management of Wound Infections

    Get PDF
    The progress in nanotechnology and the medical application of novel generations of nanomaterials have opened new horizons in the definition of non-conventional approaches against multiple diseases. Biomaterials coated with antimicrobial metal nanoparticles, along with the topical applications of zinc, silver or copper-based formulations have demonstrated huge potential in prevention from infections associated with implantable medical devices and in biofilm eradication. In wound healing, in particular, the increasing healthcare costs and the antibiotic resistance demonstrated by several microorganisms have encouraged researchers and companies in the development of innovative wound dressings with antibacterial properties and capability to promote and enhance the healing process. Supported by scientific evidence, many formulations have been proposed and a large number of works involves the use of hybrid metal nanoparticles/polymer products, which have demonstrated encouraging results both in vitro and in vivo. In this chapter, recent progress in the development of novel wound dressings based on antibacterial metal nanoparticles is presented, along with the most interesting results achieved by the authors, mainly devoted to the application of silver nanocoatings in wound management

    Amiata donkey milk chain: animal health evaluation and milk quality

    Get PDF
    This study presents a investigation into the animal health and quality of Amiata donkey milk for human consumption. Thirty one lactating dairy jennies were examined. The following samples were collected: faecal samples from the rectum of animals for parasitological examination; cervical swabs for the detection of bacteria causing reproductive disorders; and blood samples for serological diagnosis of main zoonotic (Brucella spp., Leptospira spp.) and donkey abortion agents (Brucella spp., Leptospira spp., Salmonella abortus equi, Equine viral arterithis virus, Equine herpesvirus type 1). In addition, individual milk samples were collected and analyzed for mastitis-causing pathogens and milk quality. Regarding animal health, we detected a high prevalence of strongyle parasites in donkeys. It is very important to tackle parasitic diseases correctly. Selective control programmes are preferable in order to reduce anthelmintic drug use. For dairy donkeys, withdrawal periods from anthelmintic drugs need to be carefully managed, in accordance with EU and national regulations. The isolation of Staphylococcus aureus in milk highlights the importance of preventing contamination during milking, by adopting appropriate hygiene and safety practices at a farm level. Amiata donkey milk lysozyme actvity was high compared to cow’s milk, contribuiting to the inhibitory activity against certain bacteria. Donkey milk was characterized by a high lactose content, low caseins, low fat, higher levels of unsaturated fatty acids compared to ruminant milks. Unsaturated fatty acids and omega 3 fatty acids in particular have become known for their beneficial health effect, which is favourable for human diet. These characteristics make it suitable for infants and children affected by food intolerance/allergies to bovine milk proteins and multiple food allergies as well as for adults with dyslipidemias and in the prevention of cardiovascular disease

    Efficacy Evaluation of Cu- and Ag-Based Antibacterial Treatments on Polypropylene Fabric and Comparison with Commercial Products

    Get PDF
    Filter masks are disposable devices intended to be worn in order to reduce exposure to potentially harmful foreign agents of 0.1–10.0 microns. However, to perform their function correctly, these devices should be replaced after a few hours of use. Because of this, billions of non-biodegradable face masks are globally discarded every month (3 million/minute). The frequent renewal of masks, together with the strong environmental impact of non-biodegradable plastic-based mask materials, highlights the need to find a solution to this emerging ecological problem. One way to reduce the environmental impact of masks, decrease their turnover, and, at the same time, increase their safety level is to make them able to inhibit pathogen proliferation and vitality by adding antibacterial materials such as silver, copper, zinc, and graphene. Among these, silver and copper are the most widely used. In this study, with the aim of improving commercial devices’ efficacy and eco-sustainability, Ag-based and Cu-based antibacterial treatments were performed and characterized from morphological, compositional, chemical–physical, and microbiological points of view over time and compared with the antibacterial treatments of selected commercial products. The results demonstrated the good distribution of silver and copper particles onto the surface of the masks, along with almost 100% antibacterial capabilities of the coatings against both Gram-positive and Gram-negative bacteria, which were still confirmed even after several washing cycles, thus indicating the good potential of the developed prototypes for mask application

    The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    Get PDF
    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies,which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobialmaterials for prevention of catheter-associated urinary tract infection

    Investigating the Paracrine Role of Perinatal Derivatives: Human Amniotic Fluid Stem Cell-Extracellular Vesicles Show Promising Transient Potential for Cardiomyocyte Renewal

    Get PDF
    Cardiomyocyte renewal represents an unmet clinical need for cardiac regeneration. Stem cell paracrine therapy has attracted increasing attention to resurge rescue mechanisms within the heart. We previously characterized the paracrine effects that human amniotic fluid-derived stem cells (hAFSC) can exert to provide cardioprotection and enhance cardiac repair in preclinical models of myocardial ischemia and cardiotoxicity. Here, we analyze whether hAFSC secretome formulations, namely, hAFSC conditioned medium (hAFSC-CM) over extracellular vesicles (hAFSC-EVs) separated from it, can induce cardiomyocyte renewal. c-KIT+ hAFSC were obtained by leftover samples of II trimester prenatal amniocentesis (fetal hAFSC) and from clinical waste III trimester amniotic fluid during scheduled C-section procedures (perinatal hAFSC). hAFSC were primed under 1% O2 to enrich hAFSC-CM and EVs with cardioactive factors. Neonatal mouse ventricular cardiomyocytes (mNVCM) were isolated from cardiac tissue of R26pFUCCI2 mice with cell cycle fluorescent tagging by mutually exclusive nuclear signal. mNVCM were stimulated by fetal versus perinatal hAFSC-CM and hAFSC-EVs to identify the most promising formulation for in vivo assessment in a R26pFUCCI2 neonatal mouse model of myocardial infarction (MI) via intraperitoneal delivery. While the perinatal hAFSC secretome did not provide any significant cardiogenic effect, fetal hAFSC-EVs significantly sustained mNVCM transition from S to M phase by 2-fold, while triggering cytokinesis by 4.5-fold over vehicle-treated cells. Treated mNVCM showed disorganized expression of cardiac alpha-actinin, suggesting cytoskeletal re-arrangements prior to cell renewal, with a 40% significant downregulation of Cofilin-2 and a positive trend of polymerized F-Actin. Fetal hAFSC-EVs increased cardiomyocyte cell cycle progression by 1.8-fold in the 4-day-old neonatal left ventricle myocardium short term after MI; however, such effect was lost at the later stage. Fetal hAFSC-EVs were enriched with a short isoform of Agrin, a mediator of neonatal heart regeneration acting by YAP-related signaling; yet in vitro application of YAP inhibitor verteporfin partially affected EV paracrine stimulation on mNVCM. EVs secreted by developmentally juvenile fetal hAFSC can support cardiomyocyte renewal to some extension, via intercellular conveyance of candidates possibly involving Agrin in combination with other factors. These perinatal derivative promising cardiogenic effects need further investigation to define their specific mechanism of action and enhance their potential translation into therapeutic opportunity

    In Vitro Assessment of the Antibacterial Potential of Silver Nano-Coatings on Cotton Gauzes for Prevention of Wound Infections

    No full text
    Multidrug-resistant organisms are increasingly implicated in acute and chronic wound infections, thus compromising the chance of therapeutic options. The resistance to conventional antibiotics demonstrated by some bacterial strains has encouraged new approaches for the prevention of infections in wounds and burns, among them the use of silver compounds and nanocrystalline silver. Recently, silver wound dressings have become widely accepted in wound healing centers and are commercially available. In this work, novel antibacterial wound dressings have been developed through a silver deposition technology based on the photochemical synthesis of silver nanoparticles. The devices obtained are completely natural and the silver coatings are characterized by an excellent adhesion without the use of any binder. The silver-treated cotton gauzes were characterized through scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA) in order to verify the distribution and the dimension of the silver particles on the cotton fibers. The effectiveness of the silver-treated gauzes in reducing the bacterial growth and biofilm proliferation has been demonstrated through agar diffusion tests, bacterial enumeration test, biofilm quantification tests, fluorescence and SEM microscopy. Moreover, potential cytotoxicity of the silver coating was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) and the extract method on fibroblasts and keratinocytes. Inductively coupled plasma mass spectrometry (ICP-MS) was performed in order to determine the silver release in different media and to relate the results to the biological characterization. All the results obtained were compared with plain gauzes as a negative control, as well as gauzes treated with a higher silver percentage as a positive control

    Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin

    Get PDF
    Bone tissue engineering (BTE) represents a multidisciplinary research field involving many aspects of biology, engineering, material science, clinical medicine and genetics to create biological substitutes to promote bone regeneration. The definition of the most appropriate biomaterials and structures for BTE is still a challenge for researchers, aiming at simultaneously combining different features such as tissue generation properties, biocompatibility, porosity and mechanical strength. In this scenario, among the biomaterials for BTE, silk fibroin represents a valuable option for the development of functional devices because of its unique biological properties and the multiple chances of processing. This review article aims at providing the reader with a general overview of the most recent progresses in bone tissue engineering in terms of approaches and materials with a special focus on silk fibroin and the related mechanisms involved in bone regeneration, and presenting interesting results obtained by different research groups, which assessed the great potential of this protein for bone tissue engineering

    The Emerging Role of Silk Fibroin for the Development of Novel Drug Delivery Systems

    No full text
    In order to reduce the toxicological impact on healthy cells and to improve the therapeutic response, many drug delivery systems have been fabricated and analysed, involving the use of different natural and synthetic materials at macro-, micro- and nanoscales. Among the natural materials which have demonstrated a huge potential for the development of effective drug delivery systems, silk fibroin has emerged for its excellent biological properties and for the possibility to be processed in a wide range of forms, which can be compliant with multiple active molecules and pharmaceutical ingredients for the treatment of various diseases. This review aims at presenting silk fibroin as an interesting biopolymer for applications in drug delivery systems, exploring the results obtained in recent works in terms of technological progress and effectiveness in vitro and in vivo
    corecore