16 research outputs found

    How pregnancy can affect autoimmune diseases progression?

    Get PDF
    Autoimmune disorders are characterized by tissue damage, caused by self-reactivity of different effectors mechanisms of the immune system, namely antibodies and T cells. Their occurrence may be associated with genetic and/or environmental predisposition and to some extent, have implications for fertility and obstetrics. The relationship between autoimmunity and reproduction is bidirectional. This review only addresses the impact of pregnancy on autoimmune diseases and not the influence of autoimmunity on pregnancy development. Th17/Th1-type cells are aggressive and pathogenic in many autoimmune disorders and inflammatory diseases. The immunology of pregnancy underlies the role of Th2-type cytokines to maintain the tolerance of the mother towards the fetal semi-allograft. Non-specific factors, including hormonal changes, favor a switch to Th2-type cytokine profile. In pregnancy Th2, Th17/Th2 and Treg cells accumulate in the decidua but may also be present in the mother’s circulation and can regulate autoimmune responses influencing the progression of autoimmune diseases

    Decidual Interleukin-22-Producing CD4+ T Cells (Th17/Th0/IL-22+ and Th17/Th2/IL-22+, Th2/IL-22+, Th0/IL-22+), Which Also Produce IL-4, Are Involved in the Success of Pregnancy

    Get PDF
    Trophoblast expressing paternal HLA-C resembles a semiallograft, and could be rejected by maternal T cells. IL-22 seems to be involved in allograft rejection and thus could be responsible for miscarriages. We examined the role of decidual IL-22-producing CD4+ T on human pregnancy. In those experiencing successful pregnancy and those experiencing unexplained recurrent abortion (URA), the levels of IL-22 produced by decidual CD4+ T cells are higher than those of peripheral blood T cells. We found a correlation of IL-22 and IL-4 produced by decidual CD4+ T cells in those experiencing successful pregnancy, not in those experiencing URA. The correlation of IL-22 and IL-4 was also found in the serum of successful pregnancy. A prevalence of CD4+ T cells producing IL-22 and IL-4 (Th17/Th2/IL-22+, Th17/Th0/IL-22+, Th17/Th2/IL-22+, and Th0/IL-22+ cells) was observed in decidua of those experiencing successful pregnancy, whereas Th17/Th1/IL-22+ cells, which do not produce IL-4, are prevalent in those experiencing URA. Th17/Th2/IL-22+ and Th17/Th0/IL-22+ cells are exclusively present at the embryo implantation site where IL-4, GATA-3, IL-17A, ROR-C, IL-22, and AHR mRNA are expressed. T-bet and IFN-Îł mRNA are found away from the implantation site. There is no pathogenic role of IL-22 when IL-4 is also produced by decidual CD4+ cells. Th17/Th2/IL-22+ and Th17/Th0/IL-22+ cells seem to be crucial for embryo implantation

    Antiinflammatory effect of androgen receptor activation in human benign prostatic hyperplasia cells

    Get PDF
    Progression of benign prostatic hyperplasia (BPH) involves chronic inflammation and immune dysregulation. Preclinical studies have demonstrated that prostate inflammation and tissue remodeling are exacerbated by hypogonadism and prevented by testosterone supplementation. We now investigated whether, in humans, hypogonadism was associated with more severe BPH inflammation and thein vitroeffect of the selective androgen receptor agonist dihydrotestosterone (DHT) on cultures of stromal cells derived from BPH patients (hBPH). Histological analysis of inflammatory infiltrates in prostatectomy specimens from a cohort of BPH patients and correlation with serum testosterone level was performed. Even after adjusting for confounding factors, hypogonadism was associated with a fivefold increased risk of intraprostatic inflammation, which was also more severe than that observed in eugonadal BPH patients. Triggering hBPH cells by inflammatory stimuli (tumor necrosis factor α, lipopolysaccharide, or CD4+T cells) induced abundant secretion of inflammatory/growth factors (interleukin 6 (IL6), IL8, and basic fibroblast growth factor (bFGF)). Co-culture of CD4+T cells with hBPH cells induced secretion of Th1 inducer (IL12), Th1-recruiting chemokine (interferon γ inducible protein 10, IP10), and Th2 (IL9)- and Th17 (IL17)-specific cytokines. Pretreatment with DHT inhibited NF-κB activation and suppressed secretion of several inflammatory/growth factors, with the most pronounced effects on IL8, IL6, and bFGF. Reduced inflammatory cytokine production by testosterone cells, an increase in IL10, and a significant reduction of testosterone cells proliferation suggested that DHT exerted a broad antiinflammatory effect on testosterone cells. In conclusion, our data demonstrate that DHT exerts an immune regulatory role on human prostatic stromal cells, inhibiting their potential to actively induce and/or sustain autoimmune and inflammatory responses

    Interleukin-17-producing decidual CD4+ T cells are not deleterious for human pregnancy when they also produce interleukin-4

    Get PDF
    BACKGROUND: Trophoblast expressing paternal HLA-C antigens resemble a semiallograft, and could be rejected by maternal CD4+ T lymphocytes. We examined the possible role in human pregnancy of Th17 cells, known to be involved in allograft rejection and reported for this reason to be responsible for miscarriages. We also studied Th17/Th1 and Th17/Th2 cells never investigated before. We defined for the first time the role of different Th17 subpopulations at the embryo implantation site and the role of HLA-G5, produced by the trophoblast/embryo, on Th17 cell differentiation. METHODS: Cytokine production by CD4+ purified T cell and T clones from decidua of normal pregnancy, unexplained recurrent abortion, and ectopic pregnancy at both embryo implantation site and distant from that site were analyzed for protein and mRNA production. Antigen-specific T cell lines were derived in the presence and in the absence of HLA-G5. RESULTS: We found an associated spontaneous production of IL-17A, IL-17F and IL-4 along with expression of CD161, CCR8 and CCR4 (Th2- and Th17-type markers) in fresh decidua CD4+ T cells during successful pregnancy. There was a prevalence of Th17/Th2 cells (producing IL-17A, IL-17F, IL-22 and IL-4) in the decidua of successful pregnancy, but the exclusive presence of Th17 (producing IL-17A, IL-17F, IL-22) and Th17/Th1 (producing IL-17A, IL-17F, IL-22 and IFN-Îł) cells was found in the decidua of unexplained recurrent abortion. More importantly, we observed that Th17/Th2 cells were exclusively present at the embryo implantation site during tubal ectopic pregnancy, and that IL-4, GATA-3, IL-17A, ROR-C mRNA levels increased in tubal biopsies taken from embryo implantation sites, whereas Th17, Th17/Th1 and Th1 cells are exclusively present apart from implantation sites. Moreover, soluble HLA-G5 mediates the development of Th17/Th2 cells by increasing IL-4, IL-17A and IL-17F protein and mRNA production of CD4+ T helper cells. CONCLUSION: No pathogenic role of decidual Th17 cells during pregnancy was observed. Indeed, a beneficial role for these cells was observed when they also produced IL-4. HLA-G5 could be the key feature of the uterine microenvironment responsible for the development of Th17/Th2 cells, which seem to be crucial for successful embryo implantatio

    At Embryo Implantation Site IL-35 Secreted by Trophoblast, Polarizing T Cells towards IL-35+ IL-10+ IL-4+ Th2-Type Cells, Could Favour Fetal Allograft Tolerance and Pregnancy Success

    No full text
    We investigated the role of rhIL-35, at low concentrations compatible with those produced by human trophoblast cells (less than 1 ng/mL), on human T helper (Th) cell functions and the presence of decidual IL-35-producing Th cells in human pregnancy. We found that human trophoblast cells produced IL-35 but not IL-4 or IL-10. RhIL-35, at concentrations produced by human trophoblasts, polarized T cells towards IL-35+, IL-10+, IL-4+ Th2-type cells and to Foxp3+ EBI3+ p35+ T reg cells producing IL-35 but not IL-10 and IL-4. Moreover, rhIL-35 at low concentrations did not suppress the proliferation of Th cells but stimulated IL-4 and IL-10 production by established Th clones. In particular, Th1-type clones acquired the capacity to produce IL-4. In addition, purified human trophoblast cell supernatants containing IL-35 upregulated IL-4 and IL-10 production by Th clones. Finally, IL-35+, IL-10+, IL-4+ Th2-type cells, which were found to be induced by low concentrations of IL-35 compatible with those produced by human trophoblasts, are exclusively present in the decidua of a successful pregnancy and at the embryo implantation site, suggesting their stringent dependence on trophoblast cells. Thus, the proximity of Th cells to IL-35-producing trophoblasts could be the determining factor for the differentiation of IL-35+, IL-10+, IL-4+ Th2-type cells that are crucial for human pregnancy success

    At Embryo Implantation Site IL-35 Secreted by Trophoblast, Polarizing T Cells towards IL-35+ IL-10+ IL-4+ Th2-Type Cells, Could Favour Fetal Allograft Tolerance and Pregnancy Success

    Get PDF
    We investigated the role of rhIL-35, at low concentrations compatible with those produced by human trophoblast cells (less than 1 ng/mL), on human T helper (Th) cell functions and the presence of decidual IL-35-producing Th cells in human pregnancy. We found that human trophoblast cells produced IL-35 but not IL-4 or IL-10. RhIL-35, at concentrations produced by human trophoblasts, polarized T cells towards IL-35+, IL-10+, IL-4+ Th2-type cells and to Foxp3+ EBI3+ p35+ T reg cells producing IL-35 but not IL-10 and IL-4. Moreover, rhIL-35 at low concentrations did not suppress the proliferation of Th cells but stimulated IL-4 and IL-10 production by established Th clones. In particular, Th1-type clones acquired the capacity to produce IL-4. In addition, purified human trophoblast cell supernatants containing IL-35 upregulated IL-4 and IL-10 production by Th clones. Finally, IL-35+, IL-10+, IL-4+ Th2-type cells, which were found to be induced by low concentrations of IL-35 compatible with those produced by human trophoblasts, are exclusively present in the decidua of a successful pregnancy and at the embryo implantation site, suggesting their stringent dependence on trophoblast cells. Thus, the proximity of Th cells to IL-35-producing trophoblasts could be the determining factor for the differentiation of IL-35+, IL-10+, IL-4+ Th2-type cells that are crucial for human pregnancy success

    Performance evaluation of microbead and ELISA assays for follicular G-CSF: a non-invasive biomarker of oocyte developmental competence for embryo implantation.

    Full text link
    G-CSF in individual follicular fluids correlates with the potential of the corresponding embryo to result in a live birth after transfer in IVF. To evaluate the requirements for routine follicular fluid G-CSF quantification, we compared follicular fluid G-CSF measurements made with two multiplexed microbead assays purchased from Bio-Rad Laboratories and R&D Systems, and a commercial G-CSF ELISA (R&D Systems). Individual follicular fluids (n=139) associated with transferred embryos were analysed to determine cytokine profile and the fate of each transferred embryo was recorded. The effect of multiplexing as well as comparison of the respective performances of the microbead assay with a flow cytometry assay was explored. Multivariable logistic regression analysis was performed and receiver operating characteristic (ROC) analysis was used to determine the performance and sensitivity/specificity of each method for individual follicular fluids. Covariate factors known to influence IVF outcome such as age, serum oestradiol and embryo score were systematically integrated in each analysis. The quantification of follicular fluid G-CSF using microbead assay methodologies, but not ELISA, yielded results showing the utility of follicular fluid G-CSF as a biomarker predictive of a successful delivery (Au(roc): 0.77 [0.68-0.84] (p=0.003) and 0.75 [0.66-0.82] (p=0.004) for Bio-Rad and R&D Systems microbead assays respectively), whereas follicular fluid G-CSF values quantified by ELISA were not predictive (Au(roc):0.61 [0.52-0.70] p=0.84). Microbead assay and flow cytometry appeared similarly efficient for quantifying follicular fluid G-CSF and multiplex versus single-plex assays did not influence the reliability of quantification
    corecore