157 research outputs found

    User Guide: A Guide to Disability Statistics from the National Assessment of Educational Programs (NAEP)

    Get PDF
    Policymakers, service providers, disability advocacy groups and researchers use disability statistics for a wide variety of purposes. A common problem that these groups encounter is finding a data source, a disability definition and/or a statistical method that provides them with a disability statistic that is both relevant to their needs and useful. The mission of the Cornell StatsRRTC is to bridge the divide between the sources of disability data and the users of disability statistics. One product of this effort is a series of User Guides to national survey data sets that collect information on the disability population. The purpose of each of the User Guides is to provide disability data users with: 1. An easily accessible guide to the disability information available in the nationally representative survey; 2. Estimates of the population with a disability, the disability prevalence rate, and estimates of participation-related statistics; 3. A description of the unique features of the dataset that will help disability statistics users determine whether the dataset can provide them with the statistic that they need; and 4. A description of how the dataset compares to other national data that are used to describe the population with disabilities. This User Guide contains information on the National Assessment of Educational Programs (NAEP), also known as “the Nation\u27s Report Card.” Unlike the other data sources addressed by the User Guide Series, the NAEP focuses solely on children. As a result, the focus of this Guide will shift to the inclusion and accommodation of educational activities of children with disabilities, as opposed to adult employment and economic well-being, which are the focus of many of the other User Guide

    A multilevel framework for optimization of an aircraft wing incorporating postbuckling effects

    Get PDF
    The optimization of aerospace structures is a very complex problem, owing to the hundreds of design variables a multidisciplinary optimization may contain, so that multilevel optimization is required. This paper presents recent developments to the optimization software VICONOPT MLO, a multilevel optimization interface between the analysis and design software packages VICONOPT and MSC/NASTRAN. The software developed, VICONOPT MLOP (Multilevel Optimization with Postbuckling) incorporates postbuckling behaviour, allowing individual panels to buckle before the design load is reached, while carrying load at a reduced stiffness. By combining two iterative cycles the first of which (known as the analysis cycle) calculates these reduced postbuckling stiffnesses at an individual panel level in order to converge on an appropriate load distribution at a whole structure or system level and the second of which (known as the design cycle) optimizes individual panels based on this load redistribution to converge on an optimized mass for the whole structure. The paper provides a detailed overview of the functionality of the software and a case study is conducted into the optimization of a composite aircraft wing. The results of the case study show substantial mass savings, proving the software’s capabilities when dealing with such problems. The time taken for this multilevel optimization also demonstrates the efficiency of the software

    An integrated numerical model for investigating guided waves in impact-damaged composite laminates

    Get PDF
    This paper presents a novel numerical technique that combines predictions of impact-induced damage and subsequent ultrasonic guided-wave propagation in composite laminates, with emphasis on the development and verification of the modelling framework. Delamination and matrix cracking are considered in the modelling technique, which is validated by experimental measurements on a carbon-fibre/epoxy plate using a drop-weight impact tower and a scanning laser vibrometer. Good agreement has been found between simulations and experiments regarding the impact response and global-local wavefields. Effects of these two damage modes, damage extent and multiple impacts on guided waves are studied using the modelling tool. Matrix cracking leads to lower wavefield scattering compared with delamination, particularly in un-damaged regions. The modelling strategy can provide valuable guidelines for optimising health-monitoring arrangements on composite structures that are susceptible to impacts, and the guided-wave model can also be integrated with other numerical models for predicting internal flaws in composite laminates

    A validation of Amazon Mechanical Turk for the collection of acceptability judgments in linguistic theory

    Get PDF
    Amazon’s Mechanical Turk (AMT) is a Web application that provides instant access to thousands of potential participants for survey-based psychology experiments, such as the acceptability judgment task used extensively in syntactic theory. Because AMT is a Web-based system, syntacticians may worry that the move out of the experimenter-controlled environment of the laboratory and onto the user-controlled environment of AMT could adversely affect the quality of the judgment data collected. This article reports a quantitative comparison of two identical acceptability judgment experiments, each with 176 participants (352 total): one conducted in the laboratory, and one conducted on AMT. Crucial indicators of data quality—such as participant rejection rates, statistical power, and the shape of the distributions of the judgments for each sentence type—are compared between the two samples. The results suggest that aside from slightly higher participant rejection rates, AMT data are almost indistinguishable from laboratory data

    Delamination characteristics of glare laminates containing doubler and splice features under high cycle fatigue loading

    Get PDF
    A modified cohesive zone model (CZM) has been developed to simulate damage initiation and evolution inGlare™ Fibre-Metal Laminate (FML) specimens containing both splice and doubler features under high-cycle fatigue loading. The model computes the cohesive stiffness degradation under mixed-mode loading based on user-defined crack growth rate data and is implemented in a VUMAT subroutine for the FEA software Abaqus/Explicit. To validate the model experimental data has been obtained for a number of Glare 4B specimens containing splice and doubler features monitored using digital image correlation (DIC) to provide full-field displacement and strain data and Acoustic Emission (AE) monitoring to detect damage initiation and propagation. The model was used to predict the initiation and growth of damage in splice joints under quasi-static loading. The results were verified against the cohesive zone model available in Abaqus and then validated against experimental data on Glare specimens. The codes are currently being extended to incorporate a mixed-mode fatigue damage evolution model based on input Paris laws, which have been extracted from high cycle fatigue experiments on Glare specimens containing both splice and doubler joints

    Draft genomes of two Artocarpus plants, jackfruit (A. heterophyllus) and breadfruit (A. altilis)

    Get PDF
    Two of the most economically important plants in the Artocarpus genus are jackfruit (A. heterophyllus Lam.) and breadfruit (A. altilis (Parkinson) Fosberg). Both species are long-lived trees that have been cultivated for thousands of years in their native regions. Today they are grown throughout tropical to subtropical areas as an important source of starch and other valuable nutrients. There are hundreds of breadfruit varieties that are native to Oceania, of which the most commonly distributed types are seedless triploids. Jackfruit is likely native to the Western Ghats of India and produces one of the largest tree-borne fruit structures (reaching up to 45 kg). To-date, there is limited genomic information for these two economically important species. Here, we generated 273 Gb and 227 Gb of raw data from jackfruit and breadfruit, respectively. The high-quality reads from jackfruit were assembled into 162,440 scaffolds totaling 982 Mb with 35,858 genes. Similarly, the breadfruit reads were assembled into 180,971 scaffolds totaling 833 Mb with 34,010 genes. A total of 2822 and 2034 expanded gene families were found in jackfruit and breadfruit, respectively, enriched in pathways including starch and sucrose metabolism, photosynthesis, and others. The copy number of several starch synthesis-related genes were found to be increased in jackfruit and breadfruit compared to closely-related species, and the tissue-specific expression might imply their sugar-rich and starch-rich characteristics. Overall, the publication of high-quality genomes for jackfruit and breadfruit provides information about their specific composition and the underlying genes involved in sugar and starch metabolism

    Predicting interlaminar damage behaviour of fibre-metal laminates containing adhesive joints under bending loads

    Get PDF
    This study includes experimental and numerical investigations on fibre-metal laminate structures containing adhesive joints under static bending loads. Experimental tests were carried out on Glare® 4B specimens manufactured in-house and containing doubler joint features. Numerical analyses were performed using Abaqus software including damage in the glass fibre reinforced polymer layers, ductile damage in the resin pockets (FM94 epoxy) and plasticity in the metal layers. A new cohesive zone model coupling friction and interfacial shear under through-thickness compressive stress has been developed to simulate delamination initiation and growth at the metal/fibre interfaces with the adhesive joint under flexural loading. This model is implemented through a user-defined VUMAT subroutine in the Abaqus/Explicit software and includes two main approaches, firstly, combining friction and interfacial shear stresses created in the interlaminar layers of the fibre-metal laminate as a result of through-thickness stresses and secondly, considering elastic-plastic damage behaviour using a new cohesive zone model based on the trapezoidal law (which provides more accurate results for the simulation of toughened epoxy matrices than the commonly used bilinear cohesive zone model). Numerical results have been validated against experimental data from 4-point bending tests and a good correlation observed with respect to both crack initiation and evolution. Delamination and shear failure were noted to be the predominant failure modes under bending stresses as expected. This is due to the higher mode-II stresses introduced during bending which cause different damage evolution behaviour to that seen for axial stresses. Finite element results revealed that both friction and shear strength parameters generated from through-thickness compression stresses have a significant effect in predicting damage in fibre-metal laminate structures under this type of loading

    Porous piezoelectric materials for energy harvesting

    Get PDF
    In this paper, we assess the energy harvesting capabilities of porous piezoelectric material under harmonic excitation and investigate the advantages of functionally grading the air inclusions. A cantilever beam energy harvester with base excitation is used to demonstrate the effects of porosity on the power generated. A homogenization step using the analytical Mori-Tanaka approach is performed initially to reduce the computational requirements. This homogenization will estimate the material properties for different levels of porosity. An Euler-Bernoulli beam model is used to efficiently estimate the power generated for a piezoelectric sensor with uniform properties. A 2D finite element model is then developed to verify the beam model; this detailed model may be used to analyze harvesters where the porosity varies through the thickness or along the length of the beams. An optimization is performed, focusing on the impact of the percentage of inclusions on the energy harvesting efficienc
    • …
    corecore