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Abstract
In this paper, we assess the energy harvesting capabilities of porous piezoelectric material under harmonic 
excitation and investigate the advantages of functionally grading the air inclusions. A cantilever beam en-
ergy harvester with base excitation is used to demonstrate the effects of porosity on the power generated. A 
homogenization step using the analytical Mori-Tanaka approach is performed initially to reduce the com-
putational requirements. This homogenization will estimate the material properties for different levels of 
porosity. An Euler-Bernoulli beam model is used to efficiently estimate the power generated for a piezoelec-
tric sensor with uniform properties. A 2D finite element model is then developed to verify the beam model; 
this detailed model may be used to analyze harvesters where the porosity varies through the thickness or 
along the length of the beams. An optimization is performed, focusing on the impact of the percentage of 
inclusions on the energy harvesting efficiency.

1 Introduction

Piezoelectric materials generate an electrical field when a strain is applied to them, which is called the direct 
piezoelectric effect. These materials also exhibit the opposite effect, where a strain arises when an electrical 
field is applied, and this is called inverse piezoelectric effect. These materials are widely used in many 
applications, for example inkjet printers, sonars, heart monitors, tennis racquets, hydrophones or air bag 
sensors, either as actuators (direct effect) or as sensors (inverse effect). A more recent application is energy 
harvesters using a vibration source, that are used to power small devices or recharge batteries. A. Ertuk and 
D.J. Inman [1–3] studied piezoelectric cantilever bimorph beams for energy harvesting, both theoretically 
and experimentally. A. Sodano [4–6] gave an extensive reviews of the applications of piezoelectric materials 
to energy harvesting. M.I. Friswell and S. Adhikari explored the possibilities of piezoelectric devices to 
harvest energy from non-linear vibration [7] and from broadband excitation [8].

For energy harvesting applications, two coefficients are used to measure the capability of a piezoelectric 
energy harvester; the electromechanical coupling and the capacitance [2]. These two coefficients depend on 
the material properties and the device geometry. The electromechanical coupling coefficient measures the 
capability of the harvester to convert strain to electrical field, and hence is based on the stiffness and 
piezoelectrical properties of the materials. Most approaches have focused on maximizing the strain in the 
piezoelectrical material through a careful optimization of the geometry [9, 10]. Some researchers have 
studied the impact of the electrical circuit configuration on the power output [11, 12], but few researchers 
have focused on reducing the capacitance. The capacitance depends on the dielectric characteristics of the 
material and the geometry of the device. The dielectric coefficients may be reduced by mixing the
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piezoelectric material with other materials which lower permittivity to create new composite materials. A
significant reduction for porous piezoelectric material with inclusions of air, which has very low dielectric
properties was reported in [13]. Porous piezoelectric materials have been studied by a number of authors.
J.F. Li et al. [14] studied this material experimentally for actuator applications. E. Roncari et al. [15] and J.
I. Roscow et al. [16] reviewed the manufacturing process of porous piezoelectric materials. M.L. Dunn and
M. Taya[17] applied homogenization mean field theory to analytically predict the mechanical, piezoelectric
and dielectric properties of porous piezoelectric materials.

There is little understanding of the effects of porous piezoelectric materials in energy harvesting. This paper
aims to fill this gap in knowledge through a study of porous piezoelectric bimorph beams under harmonic
excitation. Using the mean-field homogenization approach, the effective material properties are calculated
for different percentage of porosity. These properties are then used to model a piezoelectric cantilever beam
harvester under harmonic base excitation, which drives a load resistor. The voltage and power are calculated
for various levels of porosity, different excitation frequencies and different load resitance values.

The structure of this paper is summarized as follows. In section 2 the modeling approach is described; this
section is divided into three parts, according to the different methods used. Section 2.1 introduces the Mori-
Tanaka method to homogenize composite materials such as the porous piezoelectric material. Section 2.2
gives the analytical solution for a bimorph beam based on Euler-Bernoulli beam theory. Finally, a finite
element model (FEM) is used to verify the beam model in section 2.3; this model will enable functionally
graded piezoelectric material to be analyzed and optimized. The results for an example harvester device are
given in section 3 and the main conclusions are summarized in section 4.

2 Modelling of a cantilever beam energy harvester

The constitutive equations for linear piezoelectricity can be derived by considering an electric enthalpy func-
tion H defined, for the linear static case without body charge or forces, as [18, 19]

H(ϵ, E) =

∫∫∫
V

(
1

2
ϵijC

E
ijmnϵmn −

1

2
Eik

ϵ
inEn + Enenijϵij

)
dV (1)

In this equation, the independent variables are the elastic strain ϵmn and the electric field En. On the right
side of the equation, CE

ijmn are the elastic constitutive constants measured at constant electric field, enij are
the piezoelectric constants (measured at a constant strain or electric field) and kϵ

in are the dielectric constants
measured under constant strain. Differentiating this equation respect to the independent variables gives the
constitutive equations of piezoelectricity as

σij =
∂H(ϵ, E)

∂ϵij
= Cijmnϵmn + enijEn (2)

and Di =
∂H(ϵ, E)

∂Ei
= eimnϵmn − kinEn (3)

where the stress is σij and the electric displacement is Di. The electrical field is related to the voltage through
a gradient, equation (6), and the electrical field is related to the electrical displacement through equation (5):

ϵmn =
1

2
(um,n + un,m) (4)

Dm = kmn En (5)

and Em = −ϕ,m (6)

From equation (2), in the linear case, the stress applied to a piezoelectric material is converted to elastic de-
formation and an electrical field proportional to the piezoelectric constitutive matrix. This electrical field will
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also create a gradient through equation (6), which will generate the voltage from the energy harvester. Inter-
estingly, this electrical field also provokes energy loss, since equations (3) and (5) shows that the electrical
field will create a self-induced electrical field with opposite sign, proportional to the permittivity constants.
Hence the voltage output from the energy harvester is maximized by reducing the permittivity constants and
increasing the piezoelectric constants.

2.1 The Mori-Tanaka method

The porous piezoelectric material is composed by two phases; air and piezoelectric material. The piezo-
electric material is normally lead zirconate titanate (PZT) or Barium Titanate. For each phase the material
constants are well known, but the set of homogenized material constants must be calculated for the compos-
ite. One approach is to solve the detailed finite element model for specific percentages of random inclusions.
However, this approach is computationally expensive, and requires many elements to obtain an accurate
model. Moreover, for each percentage of material, the model must be re-calculated.

An alternative approach is to homogenize the material using analytical methods. One of the most well-known
and validated approaches is the Mori-Tanaka method which is based on mean-field homogenization theory.
This method improves the Eshelby solution [20] given for ellipsoidal inclusions in elastic mediums, and
was expanded by Y. Benveniste [21] to include composite materials and later by M. L. Dunn and M. Taya
[22] to electromechanical fields. The approach may be used in multi-field physics analysis, for example for
general composite materials [23–26] and for porous piezoelectric materials [17]. To perform a Mori-Tanaka
homogenization, the calculation of the Eshelby tensor is required. The procedure to obtain this tensor is
comprehensively detailed in [27] and hence is not explained here.

In the Mori-Tanaka method, each inclusion with properties EI, behaves as an isolated inclusion, embedded
in an infinite matrix with properties EM, that is loaded remotely by an applied strain. Hence each inclusion is
subjected to the averaged stress fields acting on it from all of the other inclusions, through the superposition
of stresses. The homogenization procedure of this method is briefly summarized. First an influence tensor
has to be calculated for every phase r (AI,r

0 ) and percentage. This concentration tensor is assumed to be
equal to the relation between the strain in the inclusion and the strain in the matrix [23]. Thus

EI,r = AI,r
0 EM (7)

This concentration tensor is written in terms of the Eshelby tensor, S∗, as

AI,r
0 =

[
I + S∗ (

EM
)−1 (

EI,r −EM
)]−1

(8)

These concentration tensors are then averaged to obtain the general influence tensor,
(
AI

(MT)

)

AI,r
(MT) =

cI,rI + cM(AI,r
0 )−1 +

N∑
j=1

cI,rAI,j
0 (AI,r

0 )−1

−1

(9)

Finally, the effective electro-elastic material tensor (E∗) is obtained using

E =

N∑
r=1

crErAr = EM +

N∑
r=2

cr
(
EI −EM

)
Ar (10)

and

E∗
(MT) = EM +

N∑
r=1

cI,r
(
EI,r −EM

)
AI,r (MT) (11)

This method is self-consistent, since the inverse of the electromechanical matrix E∗ is equal to the compli-
ance electromechanical matrix F ∗.
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2.2 Analytical Modelling of the Energy Harvester

The response of the energy harvester is predicted first by an analytical solution. A cantilever beam energy
harvester is proposed; many authors have chosen this typology [1, 7, 8, 11, 12] due to the high strains
developed at the clamped end, and because it is easy to build and test. Furthermore, analytical solutions for
beam systems are highly developed, allowing representative models to be implemeted relatively easily. The
proposed cantilever beam is composed of two piezoelectric layers with an elastic support layer in between,
and clamped at the right side, as shown in fig. 1.

X

Y

Rv(t)

PZT Polarization

PZT Polarization

Figure 1: Schematic view of the cantilever beam energy harvester with the circuit configuration.

The beam is symmetric about its neautral axis, and its thickness is small compared to its length. An Euler-
Bernoulli beam model is considered with a resistor connected in series to the electrodes on the top and bottom
piezoelectric material surfaces. Following the approach presented in [2], the external circuit admittance,
which is inversely proportional to the resistance, is related to the piezoelectric beam through the integral
form of Gauss’s law:

d

dt

∫
A

D · n dA

 =
v(t)

R
(12)

where R is the load resistance. Substituting equation (3) in equation (12), one obtains

k33bL

2hp

dv(t)

dt
+

v(t)

R
+ e31

(hp + he)

2
b

L∫
0

∂3w(x, t)

∂x2∂t
dx = 0 (13)

In this equation, k33 is the permittivity coefficient and e31 is the piezoelectric coefficient. The geometrical
dimensions b,L,hp,he are the beam width, beam length, the piezoelectric layer thickness, and the elastic layer
thickness. The displacement along the beam is represented by w; this is relative to the base motion of the
cantilever beam. The voltage across the load resistor is v(t). In equation (13) the unknown variables are v(t)
and the displacement w. Using a linear modal decomposition analysis, the displacements may be expanded
as

w(x, t) =

∞∑
n=1

ϕn(x) ηn(t) (14)

where ϕn(x) is the nth mass-normalized mode shape of the cantilever beam. The mechanical modal coor-
dinate for the nth mode is ηn. Assuming a harmonic base excitation, the voltage is harmonic and given by
v(t) = V (ω) · ejωt. Then, from equations (13) and (14), the voltage V (ω) is [2]

V (ω) = −ω2W0

∞∑
n=1

− jωθnσn

ω2
n − ω2 + j2ζnωnω

1

R
+ jωCeq +

∞∑
n=1

jωθ2
n

ω2
n − ω2 + j2ζnωnω

(15)
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where n is the mode number, ω is the frequency of the base excitation, wn is the natural frequency of the
nth mode, W0 is the amplitude of the base excitation, ζn is the modal damping for mode n, R is the load
resistance of the device connected to the energy harvester, and j is the unit imaginary (

√
−1). The parameters

σn, θn, Cep are coefficients related to the inertia of the beam, the electro-mechanical coupling coefficient
and the electrical capacitance respectively. For a cantilever beam without tip mass, and with the piezoelectric
layers covering the whole length of the beam and connected in series, these coefficients are

σn = −m

L∫
0

ϕn(x)dx (16)

θn = e31b

(
hp + he

2

)
dϕn

dx

∣∣∣∣
x=L

(17)

Ceq =
kS

33bL

2hp
(18)

where m is the mass per unit length of the beam.

The instantaneous power generated by the harvestor is obtained as P = V ·I = V 2/R, where I is the current
through the resistor.

An analytical study is performed for harvesters with piezoelectric layers that have uniform properties, but for
different percentages of inclusions. This will give some insight into the effect of porosity of the piezoelectric
material on the energy harvester performance. Although the objective, namely to maximise the harvested
power, is very clear, choosing the constraints to apply to the harvester system is not so straightforward.
Hence three models will be considered, which show the effect of the percentage of piezoelectric material for a
specific constraint (geometrical properties, mass and frequency). Unless otherwise specified, the geometrical
properties in table 1 are used, and the material properties are given in equation (19). The three models are:

• Model A. Thickness constant. The geometry is constant, and only the percentage of inclusions in the
piezoelectric material is varied.

• Model B. Mass constant. The mass of piezoelectric material remains constant. As the percentage
of material in the piezoelectric layers decreases, the thickness increases at the same rate to keep the
piezoelectric material mass constant.

• Model C. The first mechanical natural frequency is kept constant. The mass and stiffness of the beam
is changed by the percentage of the piezoelectric material, and hence the first natural frequency is also
changed. The thickness is modified by an iterative solver to fix the first natural frequency (to 185Hz
in the example).

2.3 Finite Element Modelling

In this section the finite element model (FEM) used is explained briefly. The FEM may be used to validate
the beam model, but will also allow the distribution of piezoelectric material to be optimized by varying
the porosity along the length and through the thickness of the beam. The model uses Matlab ® to launch
the FEM model code in ANSYS®. The model uses 2D elements to reduce the computational cost, and the
element type used for the piezoelectric material is PLANE223. This element has 8 nodes and a quadratic
displacement behavior. For the non-piezoelectric elements, the element type is PLANE183, which also has
8 nodes and a quadratic displacement behavior. The FE model is coded using the APDL programming
language, a proprietary language used in ANSYS®.

The user chooses the percentage at a reduced number of sections of the beam; the Matlab® script then
interpolates these values to give a fine distribution, using a cubic spline with zero slope at the beginning
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and end of the beam. This distribution is discretized into elements with constant properties given at their
central point. The nodes, element and material properties are then written to input files for ANSYS®. After
ANSYS® has solved the model, the APDL code prints the results to different output files which are read by
the Matlab® script.

3 Results

The geometrical properties of the cantilever beam and the material properties of the elastic support, are
detailed in table 1. The material used in the simulations is PZT-5A, whose properties are given by [2]

Geometry Elastic Material Properties
Beam Length (mm) 30 Elastic Modulus (GPa) 70

Piezoelectric Thickness (mm) 0.15 Poisson’s ratio 0.3
Elastic Layer Thickness (mm) 0.05

Analysis Parameters
Modal Damping Ratios 0.01, 0.012, 0.03, 0.059, 0.097

Load Resistance (Ω) 10, 100, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000

Table 1: Geometrical properties of the beam, material properties of the elastic support material and analysis
parameters.

EM =



121 75.4 75.2 0 0 0 0 0 5.4
121 75.2 0 0 0 0 0 5.4

111 0 0 0 0 0 −15.8
21.1 0 0 0 −12.3 0

Symmetric 21.1 0 −12.3 0 0
22.9 0 0 0

0 0 0 0 12.3 919 0 0
0 0 0 12.3 0 0 919 0

−5.4 −5.4 15.8 0 0 0 Symm. 826.6



Units =

 C (GPa) eT (C/m2)

e (C/m2) kT /k0

 Density = 7750 kg/m3

k0 = 8.854 · 10−12 pF/m

(19)

At an initial step, the homogenized material properties are obtained using the Mori-Tanaka method. The
resulting homogenized properties of the porous material for 50% to 100% of piezoelectrical material are
shown in fig. 2. This method gives smooth and consistent results, close to the results given in [17].

The dynamic behavior of different beam models with different levels of of porosity is analyzed for harmonic
base excitation with an amplitude of 1 mm and in the frequency range of 1Hz to 10kHz. The frequency
response for model A, which has constant percentage of inclusions along the length, is shown in fig. 3 .
Under 40% of matrix (piezoelectric) material, the porous structure is not stable due to cracks and the lack of
a consistent structure [13]; hence, the percentages analyzed are between 50% and 100%. The effect of the
porosity is to reduce the resonance frequency, and also to reduce the maximum displacement.

The reduced displacement will lead to a reduced output voltage. This is shown in fig. 4, which gives the
voltage FRF for a range of frequencies close to the first mode for different constant percentages of PZT. The
shift in the resonance frequencies is about 30Hz and the reduction in voltage between the non-porous case
and the 50% porous case is about 42.7%.
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Figure 2: The estimated material coefficients obtained using the Mori-Tanaka method.
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Figure 3: Frequency response for different percentages of piezoelectric material.

The results for the different simulated models are shown in figs. 5, 6 and 7. Three results are shown as sur-
faces. The first is the maximum voltage near the first mode as a function of load resistance and piezoelectric
material percentage. The second is the maximum power harvested around the first mode. The third gives the
frequency where this maximum power is achieved.

The results for Model A are shown in figures 5(a), 5(b) and 5(c). The voltage generated by the energy
harvester decreases smoothly with the percentage of piezoelectric material. The reduction in the quantity of
the PZT material leads to a reduction in all of the main parameters, namely frequency, voltage and power.

The results for Model B are shown in figure 6(a), 6(b) and 6(c). This model keeps the mass of the piezoelectric
material constant as the percentage of piezoelectric material varies. Hence, to keep the mass constant, the
thickness of the piezoelectric layers have to be increased in the same ratio to the porosity increase. The
results show a significant increase in the voltage generated, as well as the power harvested. Interestingly, the
resonance frequency in these cases tends to increase as the the porosity increases. This trend is in contrast to
that shown by the model A, and is due to the increasing thickness of the harvester, which moves piezoelectric
material further from the neutral axis, hence increases the strain in the piezoelectric layer. Higher strains in
the piezoelectric layers, contribute to an increase in the electrical field generated by the piezoelectric effect,
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Figure 4: The voltage frequency response around the first mode for different percentages of piezoelectric
material.

and therefore the voltage. The increasing frequency means that the stiffness variation is lower than the mass
variation, due to the non-linear variation in the electromechanical properties calculated by the Mori-Tanaka
method. In contrast, the mass changes linearly with the percentage of piezoelectric material, and has a bigger
impact on the resonance frequency.

The results for Model C are shown in figures 7(a), 7(b) and 7(c). The first mechanical natural frequency
of the energy harvester is fixed at 185Hz. To obtain this frequency, the thickness of the piezoelectric layer
is varied. The trends for this model are quite similar to the ones obtained for Model A, with decreasing
frequency, voltage and frequency for increasing porous inclusion percentage.
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Figure 5: Results for Model A: Thickness constant. The x-axis is the percentage piezoelectric material and
y-axis is the load resistance: (a) the maximum voltage of the energy harvester under harmonic excitation for
frequencies around the first resonance; (b) The maximum power around the first resonance; (c) the frequency
for maximum power.

4 Conclusions

The dynamic behaviour of a porous piezoelectric energy harvester was analysed. The dynamic response
has been predicted using an analytical model of a simple bimorph cantilever beam. The modeling process
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Figure 6: Results for Model B: Mass constant. The x-axis is the percentage piezoelectric material and y-
axis is the load resistance: (a) the maximum voltage of the energy harvester under harmonic excitation for
frequencies around the first resonance; (b) The maximum power around the first resonance; (c) the frequency
for maximum power.
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Figure 7: Results for Model C: Frequency constant. The x-axis is the percentage piezoelectric material and
y-axis is the load resistance: (a) the maximum voltage of the energy harvester under harmonic excitation for
frequencies around the first resonance; (b) The maximum power around the first resonance; (c) the frequency
for maximum power.

requires a homogenization approach, which in this case have been performed using the Mori-Tanaka method.
The results shows a general decrease of the material properties and energy harvested by the device with a
decrease in the mass of the piezoelectric material. When the mass of the piezoelectric material is fixed for
each level of porosity (Model B) the results shows a significant improvement in the energy harvested. These
results show that using porous material to optimize the distribution of piezoelectric material can harvest more
energy than a non-porous material. The present paper is part of ongoing research at Swansea University
investigating the applications of porous materials for energy harvesting. In future research the impact of the
distribution of the porosity along the thickness and length will be studied using the FE model presented.
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