77 research outputs found

    Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux

    Get PDF
    Vesico-ureteral reflux (VUR) is a major contributing factor to end-stage renal disease in paediatric patients. Primary VUR is a familial disorder, but little is known about its genetic causes. To investigate the involvement of 12 functional candidate genes and two reported loci in VUR, we performed a linkage study in four large, Dutch, multi-generational families with multiple affected individuals. We were unable to detect linkage to any of the genes and loci and could exclude the GDNF, RET, SLIT2, SPRY1, PAX2, AGTR2, UPK1A and UPK3A genes and the 1p13 and 20p13 loci from linkage to VUR. Our results provide further evidence that there appears to be genetic heterogeneity in VUR

    Linkage study of 14 candidate genes and loci in four large Dutch families with vesico-ureteral reflux

    Get PDF
    Vesico-ureteral reflux (VUR) is a major contributing factor to end-stage renal disease in paediatric patients. Primary VUR is a familial disorder, but little is known about its genetic causes. To investigate the involvement of 12 functional candidate genes and two reported loci in VUR, we performed a linkage study in four large, Dutch, multi-generational families with multiple affected individuals. We were unable to detect linkage to any of the genes and loci and could exclude the GDNF, RET, SLIT2, SPRY1, PAX2, AGTR2, UPK1A and UPK3A genes and the 1p13 and 20p13 loci from linkage to VUR. Our results provide further evidence that there appears to be genetic heterogeneity in VUR

    Regional Selection Acting on the OFD1 Gene Family

    Get PDF
    The OFD1 (oral-facial-digital, type 1) gene is implicated in several developmental disorders in humans. The X-linked OFD1 (OFD1X) is conserved in Eutheria. Knowledge about the Y-linked paralog (OFD1Y) is limited. In this study, we identified an OFD1Y on the bovine Y chromosome, which is expressed differentially from the bovine OFD1X. Phylogenetic analysis indicated that: a) the eutherian OFD1X and OFD1Y were derived from the pair of ancestral autosomes during sex chromosome evolution; b) the autosomal OFD1 pseudogenes, present in Catarrhini and Murinae, were derived from retropositions of OFD1X after the divergence of primates and rodents; and c) the presence of OFD1Y in the ampliconic region of the primate Y chromosome is an indication that the expansion of the ampliconic region may initiate from the X-degenerated sequence. In addition, we found that different regions of OFD1/OFD1X/OFD1Y are under differential selection pressures. The C-terminal half of OFD1 is under relaxed selection with an elevated Ka/Ks ratio and clustered positively selected sites, whereas the N-terminal half is under stronger constraints. This study provides some insights into why the OFD1X gene causes OFD1 (male-lethal X-linked dominant) and SGBS2 & JSRDs (X-linked recessive) syndromes in humans, and reveals the origin and evolution of the OFD1 family, which will facilitate further clinical investigation of the OFD1-related syndromes

    Genome-wide linkage and association study implicates the 10q26 region as a major genetic contributor to primary nonsyndromic vesicoureteric reflux

    Get PDF
    Abstract Vesicoureteric reflux (VUR) is the commonest urological anomaly in children. Despite treatment improvements, associated renal lesions – congenital dysplasia, acquired scarring or both – are a common cause of childhood hypertension and renal failure. Primary VUR is familial, with transmission rate and sibling risk both approaching 50%, and appears highly genetically heterogeneous. It is often associated with other developmental anomalies of the urinary tract, emphasising its etiology as a disorder of urogenital tract development. We conducted a genome-wide linkage and association study in three European populations to search for loci predisposing to VUR. Family-based association analysis of 1098 parent-affected-child trios and case/control association analysis of 1147 cases and 3789 controls did not reveal any compelling associations, but parametric linkage analysis of 460 families (1062 affected individuals) under a dominant model identified a single region, on 10q26, that showed strong linkage (HLOD = 4.90; ZLRLOD = 4.39) to VUR. The ~9Mb region contains 69 genes, including some good biological candidates. Resequencing this region in selected individuals did not clearly implicate any gene but FOXI2, FANK1 and GLRX3 remain candidates for further investigation. This, the largest genetic study of VUR to date, highlights the 10q26 region as a major genetic contributor to VUR in European populations

    Genes in the Ureteric Budding Pathway: Association Study on Vesico-Ureteral Reflux Patients

    Get PDF
    Vesico-ureteral reflux (VUR) is the retrograde passage of urine from the bladder to the urinary tract and causes 8.5% of end-stage renal disease in children. It is a complex genetic developmental disorder, in which ectopic embryonal ureteric budding is implicated in the pathogenesis. VUR is part of the spectrum of Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). We performed an extensive association study for primary VUR using a two-stage, case-control design, investigating 44 candidate genes in the ureteric budding pathway in 409 Dutch VUR patients. The 44 genes were selected from the literature and a set of 567 single nucleotide polymorphisms (SNPs) capturing their genetic variation was genotyped in 207 cases and 554 controls. The 14 SNPs with p<0.005 were included in a follow-up study in 202 cases and 892 controls. Of the total cohort, ∼50% showed a clear-cut primary VUR phenotype and ∼25% had both a duplex collecting system and VUR. We also looked for association in these two extreme phenotype groups. None of the SNPs reached a significant p-value. Common genetic variants in four genes (GREM1, EYA1, ROBO2 and UPK3A) show a trend towards association with the development of primary VUR (GREM1, EYA1, ROBO2) or duplex collecting system (EYA1 and UPK3A). SNPs in three genes (TGFB1, GNB3 and VEGFA) have been shown to be associated with VUR in other populations. Only the result of rs1800469 in TGFB1 hinted at association in our study. This is the first extensive study of common variants in the genes of the ureteric budding pathway and the genetic susceptibility to primary VUR

    Glomerulocystic kidney disease

    Get PDF
    Glomerulocystic disease is a rare renal cystic disease with a long descriptive history. Findings from recent studies have significantly advanced the pathophysiological understanding of the disease processes leading to this peculiar phenotype. Many genetic syndromes associated with glomerulocystic disease have had their respective proteins localized to primary cilia or centrosomes. Transcriptional control of renal developmental pathways is dysregulated in obstructive diseases that also lead to glomerulocystic disease, emphasizing the importance of transcriptional choreography between renal development and renal cystic disease

    Ciliopathies: an expanding disease spectrum

    Get PDF
    Ciliopathies comprise a group of disorders associated with genetic mutations encoding defective proteins, which result in either abnormal formation or function of cilia. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that include characteristically, retinal degeneration, renal disease and cerebral anomalies. Additional manifestations include congenital fibrocystic diseases of the liver, diabetes, obesity and skeletal dysplasias. Ciliopathic features have been associated with mutations in over 40 genes to date. However, with over 1,000 polypeptides currently identified within the ciliary proteome, several other disorders associated with this constellation of clinical features will likely be ascribed to mutations in other ciliary genes. The mechanisms underlying many of the disease phenotypes associated with ciliary dysfunction have yet to be fully elucidated. Several elegant studies have crucially demonstrated the dynamic ciliary localisation of components of the Hedgehog and Wnt signalling pathways during signal transduction. Given the critical role of the cilium in transducing “outside-in” signals, it is not surprising therefore, that the disease phenotypes consequent to ciliary dysfunction are a manifestation of aberrant signal transduction. Further investigation is now needed to explore the developmental and physiological roles of aberrant signal transduction in the manifestation of ciliopathy phenotypes. Utilisation of conditional and inducible murine models to delete or overexpress individual ciliary genes in a spatiotemporal and organ/cell-specific manner should help clarify some of the functional roles of ciliary proteins in the manifestation of phenotypic features

    OFDI, the gene mutated in Oral-Facial-Digital syndrome type 1, codes for a metanephic mesenchymal protein

    No full text
    corecore