604 research outputs found

    Decline of large-diameter trees in a bamboo-dominated forest following anthropogenic disturbances in southwestern Amazonia.

    Get PDF
    Reduction in the aboveground biomass of larger trees is the main consequence of disturbances in open forests dominated by bamboo. Because these trees are of central importance both for ecosystem function and for the economic value of the forest for management, the impact on these trees due to the increase of bamboo abundance following anthropogenic disturbances is both an environmental and a commercial concern.Includes supplementary material

    Modelos indiretos de estimativa de biomassa de capoeiras na Amazônia Central.

    Get PDF
    Com o objetivo de aprimorar as estimativas indiretas de biomassa de vegetações secundárias da Amazônia Central, foram desenvolvidos modelos matemáticos para estimar a biomassa aérea de capoeiras derivados da relação entre peso e dados de diâmetro à altura do peito e altura total de plantas e dados relacionados ao histórico de uso da terra

    Soil carbon stocks under amazonian forest: distribution in the soil fractions and vulnerability to emission.

    Get PDF
    Transformations of natural ecosystems in tropical regions, which are usually covered by high-biomass forests, contribute to increased atmospheric CO2. Much of the carbon in forest ecosystems is stored in the soil. This study estimates soil carbon stock in a dense forest in central Amazonia from sets of soil samples collected in three topographic positions (plateau, slope and valley bottom). Soil organic matter (SOM) was fractionated by density and particle size, thus obtaining the free light fraction (FLF), intra-aggregated light fraction (IALF), sand fraction (F-sand), clay fraction (F-clay) and silt fraction (F-silt)

    Combining remote sensing and household level data for regional scale analysis of land cover change in the Brazilian Amazon

    Get PDF
    Land cover change in the Brazilian Amazon depends on the spatial variability of political, socioeconomic and biophysical factors, as well as on the land use history and its actors. A regional scale analysis was made in Rondônia State to identify possible differences in land cover change connected to spatial policies of land occupation, size and year of establishment of properties, accessibility measures and soil fertility. The analysis was made based on remote sensing data and household level data gathered with a questionnaire. Both types of analyses indicate that the highest level of total deforestation is found inside agrarian projects, especially in those established more than 20 years ago. Even though deforestation rates are similar inside and outside official settlements, inside agrarian projects forest depletion can exceed 50% at the property level within 10–14 years after establishment. The data indicate that both small-scale and medium to large-scale farmers contribute to deforestation processes in Rondônia State encouraged by spatial policies of land occupation, which provide better accessibility to forest fringes where soil fertility and forest resources are important determinants of location choic

    Height-diameter allometry of tropical forest trees

    Get PDF
    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were: 1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap). 2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A). 3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass. Annual precipitation coefficient of variation (PV), dry season length (SD), and mean annual air temperature (TA) emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike\u27s information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in H:D relationships not accounted for by this model could be attributed to variations in soil physical conditions. Other things being equal, trees tend to be more slender in the absence of soil physical constraints, especially at smaller D. Pantropical and continental-level models provided less robust estimates of H, especially when the roles of climate and stand structure in modulating H:D allometry were not simultaneously taken into account

    Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia

    Get PDF
    Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970's, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration

    New insights into the distribution and conservation status of the Golden-White Tassel-Ear Marmoset Mico chrysoleucos (Primates, Callitrichidae)

    Get PDF
    Among the 13 Mico species recognized by the IUCN Red List of Threatened Species, six are listed as "Data Deficient". The geographic range of most of the Mico species has been estimated from only a few records. We report new localities and the geographic extension of Mico chrysoleucos. In addition, we confirmed the presence of the species in two distinct protected areas. We modeled the habitat suitability of M. chrysoleucos using the maximum entropy method and including new records obtained by the authors in the state of Amazonas, Brazil. From the total area of occurrence calculated for the species, 22.8% is covered by protected areas and indigenous lands. The annual mean deforestation rate estimated between 2000 and 2015 was 2.95%, and the total area deforested by 2015 was 3354 km2 or 8.6% of the total distribution limits of the species. The habitat lost between 2000 and 2015 was 3.2% (1131 km2 ) of the total potential distribution, while the habitat loss area legally protected was 31 km2, and the habitat loss in settlements was equal to 691 km2. Our results extend the geographic distribution of the species about 100 km farther south, with the Maracanã River being a possible geographic barrier for the species. The significantly low rate of habitat loss inside protected areas and indigenous land, when compared to unprotected areas, points out the importance of these areas to M. chrysoleucos conservation. The species is relatively wide-ranging, legally protected, and resilient to regional anthropic threats. However, the hydroelectric schemes and the improvement of the road system in southern Amazonia pose an imminent threat to the species
    corecore