173 research outputs found

    Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis

    Full text link
    Considering a gas of self-propelled particles with binary interactions, we derive the hydrodynamic equations governing the density and velocity fields from the microscopic dynamics, in the framework of the associated Boltzmann equation. Explicit expressions for the transport coefficients are given, as a function of the microscopic parameters of the model. We show that the homogeneous state with zero hydrodynamic velocity is unstable above a critical density (which depends on the microscopic parameters), signaling the onset of a collective motion. Comparison with numerical simulations on a standard model of self-propelled particles shows that the phase diagram we obtain is robust, in the sense that it depends only slightly on the precise definition of the model. While the homogeneous flow is found to be stable far from the transition line, it becomes unstable with respect to finite-wavelength perturbations close to the transition, implying a non trivial spatio-temporal structure for the resulting flow. We find solitary wave solutions of the hydrodynamic equations, quite similar to the stripes reported in direct numerical simulations of self-propelled particles.Comment: 33 pages, 11 figures, submitted to J. Phys.

    Turning with the others: novel transitions in an SPP model with coupling of accelerations

    Full text link
    We consider a three dimensional, generalized version of the original SPP model for collective motion. By extending the factors influencing the ordering, we investigate the case when the movement of the self-propelled particles (SPP-s) depends on both the velocity and the acceleration of the neighboring particles, instead of being determined solely by the former one. By changing the value of a weight parameter s determining the relative influence of the velocity and the acceleration terms, the system undergoes a kinetic phase transition as a function of a behavioral pattern. Below a critical value of s the system exhibits disordered motion, while above it the dynamics resembles that of the SPP model. We argue that in nature evolutionary processes can drive the strategy variable s towards the critical point, where information exchange between the units of a system is maximal.Comment: 13 pages, 9 figures, submitted to Phys Rev

    Change in the distribution of a member of the strand line community: the seaweed fly (Diptera: Coelopidae)

    Get PDF
    1. Coastal organisms are predicted to be particularly susceptible to the impact of global warming. In this study the distribution and relative abundance of two coastal invertebrates, Coelopa frigida (Fabricius) and C. pilipes are investigated. 2. Coelopa pilipes has a more southerly distribution than C. frigida , and prefers a warmer climate. Coelopa pilipes is less resistant to sub-zero temperatures than C. frigida and its northerly distribution is probably limited by cold winter days. 3. The most recent distribution map of C. frigida and C. pilipes in northern Europe was published a decade ago and showed the northerly extent of the distribution of C. pilipes reaching the north coast of mainland Scotland but its complete absence from the Western and Northern Isles. 4. C. pilipes has now spread throughout the Western Isles and the Orkney Islands but is still absent from Shetland. There has also been an increase in the relative frequency of C. pilipes at sites harbouring coelopids on the British mainland. A similar pattern of distribution change along the west coast of Sweden is reported. 5. It is proposed that these changes have occurred primarily as a result of global warming and in particular due to the recent increase in winter temperatures. A number of other indirect effects may have also contributed to these changes, including a probable change in macroalgae distribution. The implications of these changes for the wrack bed ecosystem and at higher trophic levels are considered

    Tracking seabird migration in the tropical Indian Ocean reveals basin-scale conservation need

    Get PDF
    Summary Understanding marine predator distributions is an essential component of arresting their catastrophic declines.1,2,3,4 In temperate, polar, and upwelling seas, predictable oceanographic features can aggregate migratory predators, which benefit from site-based protection.5,6,7,8 In more oligotrophic tropical waters, however, it is unclear whether environmental conditions create similar multi-species hotspots. We track the non-breeding movements and habitat preferences of a tropical seabird assemblage (n = 348 individuals, 9 species, and 10 colonies in the western Indian Ocean), which supports globally important biodiversity.9,10,11,12 We mapped species richness from tracked populations and then predicted the same diversity measure for all known Indian Ocean colonies. Most species had large non-breeding ranges, low or variable residency patterns, and specific habitat preferences. This in turn revealed that maximum species richness covered >3.9 million km2, with no focused aggregations, in stark contrast to large-scale tracking studies in all other ocean basins.5,6,7,13,14 High species richness was captured by existing marine protected areas (MPAs) in the region; however, most occurred in the unprotected high seas beyond national jurisdictions. Seabirds experience cumulative anthropogenic impacts13 and high mortality15,16 during non-breeding. Therefore, our results suggest that seabird conservation in the tropical Indian Ocean requires an ocean-wide perspective, including high seas legislation.17 As restoration actions improve the outlook for tropical seabirds on land18,19,20,21,22 and environmental change reshapes the habitats that support them at sea,15,16 appropriate marine conservation will be crucial for their long-term recovery and whole ecosystem restoration

    Educational landscapes and the environmental entanglement of humans and non-humans through the starling murmuration

    Get PDF
    Recent years have seen a continued critical reflection on the “post” or “more‐than” representational landscape as well as a related critique of nature which centres on this concept as a deployment of meanings and their effects. In this paper, I want to explore the possibilities and challenges of widening access to these more entangled and performative understandings of nature and landscape through the example of winter roosting starlings and the spectacle of the starling mumuration. In doing so, the paper also explores the dominant educational constructions of nature as utilised in conservation work and informal educational television, the consideration of the latter taken up through my own work on a forthcoming BBC television series. The focus of this exploration is the RSPB Ham Wall nature reserve on the Somerset Levels, widely regarded as one of the prime locations in Britain for observing murmurations, and where the number of visitors coming specifically to view roosting starlings on a winter's evening can reach 1,000 people. While in many ways the reserve maintains conventional roles of warden‐led stewardship and observational education of nature “in its place,” I also want to suggest that the spectacle of the starling murmuration affords an opportunity to convey humans and non‐humans as embedded in a more performative understanding of conservation which challenges the predominant conventions of conservation practice. In this more reflexive educational context, the possibility exists to frame an accessible and illustrative understanding of the geographies of a more entangled human–non‐human nature

    Pollutants Increase Song Complexity and the Volume of the Brain Area HVC in a Songbird

    Get PDF
    Environmental pollutants which alter endocrine function are now known to decrease vertebrate reproductive success. There is considerable evidence for endocrine disruption from aquatic ecosystems, but knowledge is lacking with regard to the interface between terrestrial and aquatic ecosystems. Here, we show for the first time that birds foraging on invertebrates contaminated with environmental pollutants, show marked changes in both brain and behaviour. We found that male European starlings (Sturnus vulgaris) exposed to environmentally relevant levels of synthetic and natural estrogen mimics developed longer and more complex songs compared to control males, a sexually selected trait important in attracting females for reproduction. Moreover, females preferred the song of males which had higher pollutant exposure, despite the fact that experimentally dosed males showed reduced immune function. We also show that the key brain area controlling male song complexity (HVC) is significantly enlarged in the contaminated birds. This is the first evidence that environmental pollutants not only affect, but paradoxically enhance a signal of male quality such as song. Our data suggest that female starlings would bias their choice towards exposed males, with possible consequences at the population level. As the starling is a migratory species, our results suggest that transglobal effects of pollutants on terrestrial vertebrate physiology and reproduction could occur in birds

    The use of sewage treatment works as foraging sites by insectivorous bats

    Get PDF
    Sewage treatment works with percolating filter beds are known to provide profitable foraging areas for insectivorous birds due to their association with high macroinvertebrate densities. Fly larvae developing on filter beds at sewage treatment works may similarly provide a valuable resource for foraging bats. Over the last two decades, however, there has been a decline in filter beds towards a system of “activated sludge”. Insects and bat activity were surveyed at 30 sites in Scotland employing these two different types of sewage treatment in order to assess the possible implications of these changes for foraging bats. Bat activity (number of passes) recorded from broad-band bat detectors was quantified at three points within each site. The biomass of aerial insects, sampled over the same period as the detector surveys, was measured using a suction trap. The biomass of insects and activity of Pipistrellus spp. was significantly higher at filter beds than at activated sludge sites. In addition, whilst foraging activity of Pipistrellus spp. at filter beds was comparable to that of adjacent “good” foraging habitat, foraging at activated sludge sites was considerably lower. This study indicates the high potential value of an anthropogenic process to foraging bats, particularly in a landscape where their insect prey has undergone a marked decline, and suggests that the current preference for activated sludge systems is likely to reduce the value of treatment works as foraging sites for bats

    Can Preening Contribute to Influenza A Virus Infection in Wild Waterbirds?

    Get PDF
    Wild aquatic birds in the Orders Anseriformes and Charadriiformes are the main reservoir hosts perpetuating the genetic pool of all influenza A viruses, including pandemic viruses. High viral loads in feces of infected birds permit a fecal-oral route of transmission. Numerous studies have reported the isolation of avian influenza viruses (AIVs) from surface water at aquatic bird habitats. These isolations indicate aquatic environments have an important role in the transmission of AIV among wild aquatic birds. However, the progressive dilution of infectious feces in water could decrease the likelihood of virus/host interactions. To evaluate whether alternate mechanisms facilitate AIV transmission in aquatic bird populations, we investigated whether the preen oil gland secretions by which all aquatic birds make their feathers waterproof could support a natural mechanism that concentrates AIVs from water onto birds' bodies, thus, representing a possible source of infection by preening activity. We consistently detected both viral RNA and infectious AIVs on swabs of preened feathers of 345 wild mallards by using reverse transcription–polymerase chain reaction (RT-PCR) and virus-isolation (VI) assays. Additionally, in two laboratory experiments using a quantitative real-time (qR) RT-PCR assay, we demonstrated that feather samples (n = 5) and cotton swabs (n = 24) experimentally impregnated with preen oil, when soaked in AIV-contaminated waters, attracted and concentrated AIVs on their surfaces. The data presented herein provide information that expands our understanding of AIV ecology in the wild bird reservoir system
    corecore