6,861 research outputs found

    Z-Z' Mixing and Z-Mediated FCNCs in SU(3)_C x SU(3)_L x U(1)_X Models

    Full text link
    Most of the existing analyses of FCNC processes in the 331 models, based on the gauge group SU(3)_C x SU(3)_L x U(1)_X, take only into account tree-level exchanges of a new heavy neutral gauge boson Z'. However due to the Z-Z' mixing also corresponding contributions from Z boson are present that are usually neglected. We calculate the impact of these contributions on Delta F=2 processes and rare K, B_s and B_d decays for different values of a parameter beta, which distinguishes between various 331 models and for different fermion representations under the SU(3)_L group. We find a general expression for the Z-Z' mixing in terms beta, M_Z, M_Z' and tan(bar{beta}), familiar from 2 Higgs Doublet models, that differs from the one quoted in the literature. We study in particular the models with beta=+-n/sqrt{3} with n=1,2 which have recently been investigated by us in the context of new data on B_{s,d}->mu^+ mu^- and B_d->K^*(K)mu^+ mu^-. We find that these new contributions can indeed be neglected in the case of Delta F=2 transitions and decays, like B_d->K^*mu^+mu^-, where they are suppressed by the small vectorial Z coupling to charged leptons. However the contributions of tree-level Z exchanges to decays sensitive to axial-vector couplings, like B_{s,d}->mu^+ mu^- and B_d->K mu^+ mu^-, and those with neutrinos in the final state, like b->s nu bar{nu} transitions, K^+->pi^+ nu bar{nu} and K_L->pi^0 nu bar{nu} cannot be generally neglected with size of Z contributions depending on beta, tan(bar{beta}) and M_Z'. We analyze for the first time the ratio epsilon'/epsilon in these models including both Z' and Z contributions. Our analysis of electroweak precision observables within 331 models demonstrates transparently that the interplay of NP effects in electroweak precision observables and those in flavour observables could allow in the future to identify the favourite 331 model.Comment: 44 pages, 15 figures, 9 tables; clarifying comments added; version accepted for publication in JHE

    Quench dynamics of a disordered array of dissipative coupled cavities

    Get PDF
    We investigate the mean-field dynamics of a system of interacting photons in an array of coupled cavities in presence of dissipation and disorder. We follow the evolution of on an initially prepared Fock state, and show how the interplay between dissipation and disorder affects the coherence properties of the cavity emission and that these properties can be used as signatures of the many-body phase of the whole array.Comment: 8 pages, 10 figures, new reference adde

    Anomalous density of states of a Luttinger liquid in contact with a superconductor

    Full text link
    We study the frequency and space dependence of the local tunneling density of states of a Luttinger liquid (LL) which is connected to a superconductor. This coupling {\em strongly} modifies the single-particle properties of the LL. It significantly enhances the density of states near the Fermi level, whereas this quantity vanishes as a power law for an isolated LL. The enhancement is due to the interplay between electron-electron interactions and multiple back-scattering processes of low-energy electrons at the interface between the LL and the superconductor. This anomalous behavior extends over large distances from the interface and may be detected by coupling normal probes to the system.Comment: 8 pages Revtex, two postscript figure

    Non-abelian superconducting pumps

    Get PDF
    Cooper pair pumping is a coherent process. We derive a general expression for the adiabatic pumped charge in superconducting nanocircuits in the presence of level degeneracy and relate it to non-Abelian holonomies of Wilczek and Zee. We discuss an experimental system where the non-Abelian structure of the adiabatic evolution manifests in the pumped charge.Comment: 5 pages, 3 figure

    Generalised Unitarity for Dimensionally Regulated Amplitudes

    Get PDF
    We present a novel set of Feynman rules and generalised unitarity cut-conditions for computing one-loop amplitudes via d-dimensional integrand reduction algorithm. Our algorithm is suited for analytic as well as numerical result, because all ingredients turn out to have a four-dimensional representation. We will apply this formalism to NLO QCD corrections.Comment: Presented at SILAFAE 2014, 24-28 Nov, Ruta N, Medellin, Colombi
    • …
    corecore