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Sezione di Padova, via Marzolo 8, 35131 Padova, Italy

bDepartamento de Fı́sica, Universidad Nacional de Colombia, Ciudad Universitaria, Bogotá, D.C. Colombia
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Abstract

We present a novel set of Feynman rules and generalised unitarity cut-conditions for computing one-loop amplitudes
via d-dimensional integrand reduction algorithm. Our algorithm is suited for analytic as well as numerical result,
because all ingredients turn out to have a four-dimensional representation. We will apply this formalism to NLO QCD
corrections.
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1. Introduction

In the era of the LHC experiments of increasing ac-
curacy become possible, where one of the highlight of
Run 1 of the LHC was the discovery by CMS and AT-
LAS of a Higgs boson [1, 2]. Hence it is necessary to
achieve more accurate results for measurable quantities
at the theoretical level.
According to perturbation theory, higher order correc-
tions to amplitudes have to be considered. To evaluate
such corrections in quantum field theory, it is necessary
to compute multi loop Feynman diagrams, where, in-
stead of the explicit set of loop Feynman diagrams, the
basic reference point is the linear expansion of the am-
plitude function in a basis of master integrals (MI’s),
multiplied by coefficients that are rational functions of
the kinematic variables, already known as Passarino
Veltman reduction theorem [3] at the level of one-loop.
It is in fact possible to recover the finiteness of scattering
amplitudes at integrand level by constructing the inte-
grands by a multi-particle pole expansion arising from
the analiticity properties and unitarity of the S-matrix.
Indeed, scattering amplitudes, continued for complex
momenta, reveal their singularities structures as poles
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and branch cuts. The unitarity based method (UBM)
allows to determine the coefficients of the MI’s by ex-
panding the integrand of the tree level cut amplitudes
into an expression that resembles the cut of the basis
integrals.
In this talk, I review the four dimensional formula-

tion (FDF) proposed in [4] which is equivalent to the
four-dimensional helicity (FDH) scheme [5–7], and al-
lows for a purely four-dimensional regularisation of the
amplitudes. Within FDF, the states in the loop are de-
scribed as four dimensional massive particles. The four-
dimensional degrees of freedom of the gauge bosons are
carried by massive vector bosons of mass μ and their
(d − 4)-dimensional ones by real scalar particles obey-
ing a simple set of four-dimensional Feynman rules. A
d-dimensional fermion of mass m is instead traded for
a tardyonic Dirac field with mass m + iμγ5 [8]. The
d dimensional algebraic manipulations are replaced by
four-dimensional ones complemented by a set of mul-
tiplicative selection rules. The latter are treated as an
algebra describing internal symmetries.
This contribution is organised as follows: section 2 is

devoted to the description of the regularisation method,
while Section 3 describes how generalised unitarity
method can be applied in presence of a FDF of one-
loop amplitudes. Section 4 shows the decomposition in
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terms of MIs of certain classes of 2→ (n − 2) one-loop
amplitudes. Section 5 collects the applications of gen-
eralised unitarity methods within the FDF. In particular
it presents results for representative helicity amplitudes
of gg→ gg, gg→ ggg, gg→ gggg and gg→ gH.

2. Four dimensional formulation of the d-
dimensional regularisation scheme

We discuss briefly the regularisation scheme pro-
posed in [4], only pointing out the main ingredients.
Let’s denote as barred a quantity referred to unob-

served particles and living therefore in a ds-dimensional
space. Then, the metric tensor can be split as

ḡμν = gμν + g̃μν , (1)

in terms of a four-dimensional tensor g and a −2ε-
dimensional one, g̃, such that

g̃μρ gρν = 0 , g̃μμ = −2ε −→
ds→4

0 , gμμ = 4 , (2)

The tensors g and g̃ project a ds-dimensional vector q̄
into the four-dimensional and the −2ε-dimensional sub-
spaces respectively,

qμ ≡ gμν q̄ν , q̃μ ≡ g̃μν q̄ν . (3)

and the properties for the matrices γ̃μ = g̃μν γ̄ν can be
obtained from Eq. (2)

[γ̃α, γ5] = 0 , {γ̃α, γμ} = 0 , (4a)
{γ̃α, γ̃β} = 2 g̃αβ . (4b)

In principle, we could infer the behaviour of γ̃α from
(4) and say γ̃ ∼ γ5, however, this choice does not fulfil
the Clifford algebra when ds → 4. It means we cannot
have any four-dimensional representation of the −2ε-
subspace, therefore, we introduce an algebra with an in-
ternal symmetry called −2ε selection rules, (−2ε)-SRs,
which consists in performing the substitutions

g̃αβ → GAB, �̃α → i μQA , γ̃α → γ5 ΓA . (5)

The −2ε-dimensional vectorial indices are thus traded
for (−2ε)-SRs such that

GABGBC = GAC , GAA = 0, GAB = GBA,

ΓAGAB = ΓB, ΓAΓA = 0, QAΓA = 1,
QAGAB = QB, QAQA = 1. (6)

The exclusion of the terms containing odd powers of
μ completely defines the FDF, and allows one to build
integrands which, upon integration, yield to the same
result as in the FDH scheme.

3. Generalised Unitarity

In this section we discuss the consequence of using
internal lines in (4 − 2ε)-dimensions within FDF where
spinors and polarisation vectors are written explicitly.
These ingredients allow the construction of the tree-
level amplitudes that are needed to recover any one-loop
amplitude.
Due to FDF scheme is suitable for the four-dimensional
formulation of d-dimensional generalised unitarity, all
kinematics in the construction of the amplitude admit an
explicit representation in terms of generalised spinors
and polarisation expressions.
In the following discussion we will decompose a d-

dimensional momentum �̄ as follows

�̄ = � + �̃ , �̄2 = �2 − μ2 = m2 , (7)

while its four-dimensional component � will be ex-
pressed as

� = �	 + q̂� , q̂� ≡
m2 + μ2

2 � · q�
q� , (8)

in terms of the two massless momenta �	 and q�.

3.1. Spinors
The spinors of a d-dimensional fermion have to fulfil

a completeness relation which reconstructs the numera-
tor of the cut propagator,

2(ds−2)/2∑
λ=1

uλ, (d)
(
�̄
)

ūλ, (d)
(
�̄
)
= /̄� + m ,

2(ds−2)/2∑
λ=1

vλ, (d)
(
�̄
)

v̄λ, (d)
(
�̄
)
= /̄� − m . (9)

The substitutions (5) allow one to express Eq. (9) as
follows: ∑

λ=±
uλ (�) ūλ (�) = /� + iμγ5 + m ,

∑
λ=±

vλ (�) v̄λ (�) = /� + iμγ5 − m . (10)

with the generalised massive spinors [4]

u+ (�) =
∣∣∣�	〉 + (m − iμ)[

�	 q�
] |q�] , u− (�) =

∣∣∣�	] + (m + iμ)〈
�	 q�
〉 |q�〉 ,

v− (�) =
∣∣∣�	〉 − (m − iμ)[

�	 q�
] |q�] , v+ (�) =

∣∣∣�	] − (m + iμ)〈
�	 q�
〉 |q�〉 ,
(11a)

ū+ (�) =
[
�	
∣∣∣ + (m + iμ)〈

q� �	
〉 〈q� | , ū− (�) =

〈
�	
∣∣∣ + (m − iμ)[

q� �	
] [q� | ,
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v̄− (�) =
[
�	
∣∣∣ − (m + iμ)〈

q� �	
〉 〈q� | , v̄+ (�) =

〈
�	
∣∣∣ − (m − iμ)[

q� �	
] [q� | ,
(11b)

fulfil the completeness relation (10).

3.2. Polarisation vectors
In the axial gauge, the helicity sum of the transverse

polarisation vector is
d−2∑
i=1

ε
μ

i (d)

(
�̄, η̄
)
ε∗νi (d)

(
�̄, η̄
)
= −ḡμν +

�̄μ η̄ν + �̄ν η̄μ

�̄ · η̄
, (12)

where η̄ is an arbitrary d-dimensional massless momen-
tum such that �̄ · η̄ � 0.
In particular the choice

η̄μ = �μ − �̃μ , (13)

with �, �̃ defined in Eq. (7), allows us to disentangle the
four-dimensional contribution form the d-dimensional
one:

d−2∑
i=1

ε
μ

i (d)

(
�̄, η̄
)
ε∗νi (d)

(
�̄, η̄
)
=

(
−gμν +

�μ�ν

μ2

)
−
(
g̃μν +

�̃μ�̃ν

μ2

)
.

(14)

The first term is related to the cut propagator of a mas-
sive gluon and can be expressed as follows

−gμν +
�μ�ν

μ2
=
∑
λ=±,0
ε
μ
λ(�) ε

∗ν
λ (�) , (15)

in terms of the polarisation vectors of a vector boson of
mass μ [9],

ε
μ
+ (�) = −

[
�	 |γμ| q̂�

〉
√
2μ

, ε
μ
− (�) = −

〈
�	 |γμ| q̂�

]
√
2μ

,

ε
μ

0 (�) =
�	μ − q̂μ

�

μ
. (16)

These polarisation vectors are orthonormal and display
all of the usual properties expected for massive vector
bosons

ε2±(�) = 0 , ε±(�) · ε∓(�) = −1 ,
ε20(�) = −1 , ε±(�) · ε0(�) = 0 ,

ελ(�) · � = 0 . (17)

The second term of the r.h.s. of Eq. (14) is related to the
numerator of cut propagator of the scalar sg and can be
expressed in terms of the (−2ε)-SRs as:

g̃μν +
�̃μ�̃ν

μ2
→ ĜAB ≡ GAB − QAQB . (18)

The factor ĜAB can be easily accounted by defining the
cut propagator as

a, A b, B
= ĜAB δab . (19)

From generalised spinors and polarisation vectors the μ-
dependence of the tree-level amplitude arises.
The FDF approach to reconstruct the rational part of
one-loop scattering amplitudes is different from the su-
persymmetric decomposition [10] and from the six-
dimensional formalism [11]. Indeed, to compute any
one-loop amplitude via supersymmetric decomposi-
tion one splits the amplitude in two terms: i) cut
constructible part which is obtained by using four-
dimensional unitarity, ii) and the rational one that is
reached by introducing in the amplitude a complex
scalar in d-dimensions and deal with a massive four-
dimensional ones.
On the other hand, the six-dimensional helicity method
treats d-dimensional on-shell momenta into a six-
dimensional massless basis and, on the cuts, uses six
dimensional helicity spinors to compute the relevant
tree-level amplitudes. However, because of the argu-
ment given in [12], the contribution that comes from this
treatment gives a result that has to be corrected by hand
with the help of topologies involving complex scalars
along the lines.
Unlike the approaches presented above, FDF does not
make any distinction between cut-constructible or ratio-
nal part, as well, the result obtained with FDF scheme
is automated corrected by the (−2ε)-SRs, it splits the
d-dimensional objects into their four-dimensional and
(d − 4)-dimensional parts and finds a four-dimensional
representation for both of them. Moreover, the ap-
proaches already described are simpler than the ones
that introduce explicit higher-dimensional extension of
either the Dirac [12, 13] or the spinor [11, 14] algebra.

4. One-loop amplitudes

In order to apply generalised-unitarity methods
within FDF, we consider as examples the one-loop 2→
2, 3, 4 scattering amplitudes, where external particles
are gluons.
In general, due to the reduction theorem any mass-

less four-point one-loop amplitude can be decomposed
in terms MIs, as follows

A1-loopn =
1

(4π)2−ε
n−1∑

i< j<k<l

[
ci| j|k|l; 0 Ii| j|k|l + ci j|k|l; 0 Ii j|k|l
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+ ci j|kl; 0 Ii j|kl

]
+ R , (20a)

R =
1

(4π)2−ε
[

ci| j|k|l; 4 Ii| j|k|l[μ4] +
(
ci j|k|l; 2 Ii j|k|l[μ2]

+ ci j|kl; 2 Ii j|kl[μ2]
]
. (20b)

In Eq. (20), we see the decomposition between
cut-constructible and rational part, where the latter has
been collected in R. However, we emphasise one-loop
processes are not computed by distinguishing those two
pieces, instead within the FDF the two contributions
are computed simultaneously from the same cuts.

The coefficients c’s entering in the decomposi-
tions (20) can be obtained by using the generalised
unitarity techniques for quadruple [15, 16], triple [16–
18], and double [19–21] cuts. Since internal particles
are massless the single-cut techniques [22–24] are not
needed. In general, the cut Ci1···ik , defined by the condi-
tions Di1 = · · · = Dik = 0, allows for the determination
of the coefficients ci1···ik; n.

5. Examples

5.1. The all plus four-gluon amplitude

First, let us consider one-loop four-point amplitudes
with four outgoing massless particles

0→ 1(p1) 2(p2) 3(p3) 4(p4) , (21)

where pi is the momentum of the particle i.
Within the FDF, we consider the colour-ordered

Feynman rules that contain interactions between gluons
and scalars, however, due to the (−2ε)-SRs, the relevant
interactions are: i) three gluons and ii) one gluon with
two scalars, see the discussion below.
Let us compute the four-gluon colour-ordered helicity
amplitude A4

(
1+g , 2+g , 3+g , 4+g

)
, which at tree-level van-

ishes, while the one-loop contribution is finite and is
obtained from the quadruple-cutC1|2|3|4.
Since contribution to this amplitude comes only from
the boxes and in FDF we have five boxes, we decom-
pose this sum of boxes as:

C1|2|3|4 =
4∑

i=0
C[i]1|2|3|4 , c1|2|3|4; n =

4∑
i=0

c[i]1|2|3|4;n , (22)

whereC[i] (c[i]) is the contribution to the cut (coefficient)
involving i internal scalars.

The quadruple cuts read as follows

C[0]1|2|3|4 =
+−

+

−

+ −

+

−

1+

2+ 3+

4+

+

−+

−
+

− +

−
+

1+

2+ 3+

4+

+

00

0
0

0 0

0
0

1+

2+ 3+

4+

,

(23a)
C[1]1|2|3|4 =

∑
hi=±,0

T1
−h1h1

h2
−h2

−h3h3

1+

2+ 3+

4+

+c.p. , (23b)

C[2]1|2|3|4 =
∑

hi=±,0
T 21

−h1h1

−h2h2

1+

2+ 3+

4+

+ T2
−h1h1

h2
−h2

1+

2+ 3+

4+

+c.p. ,

(23c)
C[3]1|2|3|4 =

∑
h1=±,0

T3
−h1h11+

2+ 3+

4+

+c.p. , (23d)

C[4]1|2|3|4 = T4
1+

2+ 3+

4+

, (23e)

where the abbreviation “c.p.” means “cyclic permuta-
tions of the external particles”. In Eqs. (23) , the (−2ε)-
SR have been stripped off and collected in the prefactors
Ti,

T1 = QAĜABQB = 0 ,
T2 = QAĜABGBCĜCDQD = 0 ,
T3 = QAĜABGBCĜCDGDEĜEF QF = 0 ,

T4 = tr
(
G Ĝ G Ĝ G Ĝ G Ĝ

)
= − 1 . (24)

The prefactors T1, . . . ,T3 force the cuts (23b) - (23d)
to vanish identically. The only cuts contributing,
Eqs. (23a) and (23e), lead to the following coefficients

c[0]1|2|3|4; 0 = 0 , c[0]1|2|3|4; 4 = 3i
[12] [34]
〈12〉 〈34〉

,

c[4]1|2|3|4; 0 = 0 , c[4]1|2|3|4; 4 = −i
[12] [34]
〈12〉 〈34〉

. (25)

Therefore the only non-vanishing coefficient, c1|2|3|4; 4,
is

c1|2|3|4; 4 = c[0]1|2|3|4; 4 + c[4]1|2|3|4; 4 = 2i
[12] [34]
〈12〉 〈34〉

. (26)

The colour-ordered one-loop amplitude can be obtained
from Eq. (20), which in this simple case reduces to

A4
(
1+g , 2+g , 3+g , 4+g

)
= c1|2|3|4; 4 I1|2|3|4[μ4]
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= −
i

48 π2
[12] [34]
〈12〉 〈34〉

, (27)

and is in agreement with the literature [25].
It is worth to mention the (−2ε)-SRs can be performed
before the tree-level amplitudes are computed as well
automated cut-by-cut. It means topologies which
vanish because of the (−2ε)-SRs can be removed at
the beginning of the computation without affecting our
result.

In [4] the method is also checked by computing the
QCD one loop correction to the scattering amplitude of
two gluons production by quark anti-quark annihilation
and the processes at two-loop of three gluons fusion in
a Higgs.

5.2. Five- and six-gluon amplitudes

In this section we show how FDF works at higher
point amplitudes, as an explicit example we present
the analytic contribution of the five- and six- point all
plus amplitude, we choose this helicity configuration
because of the absence of triangles and bubble contri-
butions.

5.2.1. Five gluon amplitudes

C12|3|4|5 =

5+

4+3+

2+

1+

+

5+

4+3+

2+

1+

,

c12|3|4|5; 0 = 0 ,

c12|3|4|5; 4 =
2i [21] [43] [53] [54]
〈12〉 tr5 (4, 1, 5, 3)

; (28)

with tr5 (1, 2, 3, 4) = 〈1 |234|1] − [1 |234|1〉.
From eq. (20), the finite colour-ordered one-loop ampli-
tude reduces to

A1-loop5
(
1+, 2+, 3+, 4+, 5+

)
= c12|3|4|5; 4 I12|3|4|5

[
μ4
]

+ cyclic perms. (29)

In agreement agrees with [26].

It is worth to mention that within FDF we
have also computed other helicity configurations,
A5 (1−, 2+, 3+, 4+, 5+), A5 (1−, 2−, 3+, 4+, 5+) and
A5 (1−, 2+, 3−, 4+, 5+), where contributions from

triangles and bubbles arise, then, to obtain these con-
tributions we consider the topologies showed in Fig. 1,
with the following trees needed as input:

G G → g, S S → g,

G G → g g, S S → g g,

G G → g g g, S S → g g g. (30)

Where G and S are the generalised gluon and colour
scalar respectively and, g represents the external gluon.
As was discussed in section 5.1, tree levels containing
both generalised gluon and colour scalar as internal legs
do not contribute to the coefficient due to the −2ε-SRs.
It means that to recover any five-gluon amplitude for a
particular helicity configuration we compute the coef-
ficients that appear in eq. (20), obtaining an agreement
with NJet [27] and reproducing previous results [28].

Figure 1: Triangle and bubble topologies for the five-point.

5.2.2. Six gluon amplitudes

C123|4|5|6 =

4+

3+
2+

1+

5+

6+
+

4+

3+
2+

1+

5+

6+
,

c123|4|5|6; 0 = 0 ,

c123|4|5|6; 4 =
2i [56]

〈12〉 〈23〉 tr5 (5, 4, 6, 1) tr5 (5, 4, 6, 3)

×
(
s45 〈6 |1 + 2| 3] [51] [64]2

− s46 〈5 |1 + 2| 3] [54]2 [61]
)
;

(32a)

C12|34|5|6 =

4+

3+
2+

1+

5+

6+
+

4+

3+
2+

1+

5+

6+
,

c12|34|5|6; 0 = 0 ,
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c12|34|5|6; 4 =
2i 〈5 |1 + 2| 6] 〈6 |1 + 2| 5] [12] [43] [65]2

〈12〉 〈23〉 tr5 (5, 2, 6, 1) tr5 (5, 4, 6, 3)
;

(32b)

C12|3|45|6 =

3+

2+

1+

4+

5+

6+

+

3+

2+

1+

4+

5+

6+

,

c12|3|45|6; 0 = 0 ,

c12|3|45|6; 4 =
2i [12] [54] [63]2

〈12〉 〈45〉 tr5 (2, 3, 6, 1) tr5 (5, 3, 6, 4)
× (〈3 |1 + 2| 3] 〈6 |1 + 2| 6] − s36s12) ;

(32c)

The finite colour-ordered amplitude takes the form

A1-loop6
(
1+, 2+, 3+, 4+, 5+, 6+

)
= c123|4|5|6; 4 I123|4|5|6

[
μ4
]

+ c12|34|5|6; 4 I12|34|5|6
[
μ4
]
+
1
2

c12|3|45|6; 4 I12|3|45|6
[
μ4
]

+ cyclic perms. (33)

Which agrees with [26].

As done for the five-point, we also consider other
helicity configurations, A6 (1−, 2+, 3+, 4+, 5+, 6+),
A6 (1−, 2−, 3+, 4+, 5+, 6+), A6 (1−, 2−, 3−, 4+, 5+, 6+),
A6 (1−, 2+, 3−, 4+, 5−, 6+), A6 (1−, 2+, 3−, 4+, 5+, 6+),
A6 (1−, 2+, 3+, 4−, 5+, 6+) and A6 (1−, 2+, 3+, 4−, 5−, 6+),
where we also have to consider contributions from
triangles and bubbles, such topologies are depicted in
fig 2. Moreover, the relevant tree-level are the ones that
appear in eq. (30) and the six-points,

G G → g g g g, S S → g g g g, (34)

where the numerical value of each coefficient in eq. (20)
agrees with NJet for those helicity configurations and
with previous results[19, 20, 26, 29–37].
5.3. The gggH Amplitude

As final example we show the calculation of the
leading colour-ordered one-loop helicity amplitude
A6 (1+, 2+, 3+,H) in the heavy top mass limit. Since this
amplitude is symmetric under cyclic and non-cyclic per-
mutations of the particles we only consider the indepen-
dent topologies for boxes, triangles and bubbles.
The leading-order contribution reads as follows

Atree4,H
(
1+, 2+, 3+,H

)
=

−i m4H
〈12〉 〈23〉 〈31〉

, (36)

The quadruple cut is given by:

Figure 2: Triangle and bubble topologies for the six-point.

C1|2|3|H =

1+

2+ 3+

H

+

1+

2+ 3+

H

,

c1|2|3|H; 0 = −
1
2

Atree4,H
(
1+, 2+, 3+,H

)
s12s23 ,

c1|2|3|H; 4 = 0 , (37a)

The triple cut with two massive channels is

C12|3|H =
1+

2+

3+

H

+
1+

2+

3+

H

,

c12|3|H; 0 =
1
2

Atree4,H
(
1+, 2+, 3+,H

)
(s13 + s23) ,

c12|3|H; 2 = 0 , (38a)

while the one with one massive channel only reads as
follows:

C1|2|3H =

1−

2+

3+

H
+

1−

2+

3+

H
,

c1|2|3H; 0 = 0 ,

c1|2|3H; 0 = −2Atree4,H
(
1+, 2+, 3+,H

) s13s23
m4H

, (39a)

Finally, the double cut is given by:

C12|3H =
1+

2+ 3+

H
+

1+

2+ 3+

H
,
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c12|3H; 0 = 0 ,

c12|3H; 2 = 4Atree4,H
(
1+, 2+, 3+,H

) s13s23
s12m4H

, (40a)

The cut C123|H does not give any contribution. The re-
quired trees to compute these coefficients are (30) and

G G → H, S S → H,

G G → g H, S S → g H (41)

where the Feynman rules for the Higgs-gluon and
Higgs-scalar couplings in the FDF are given in Ap-
pendix C of [4].
Then the colour-ordered one-loop helicity amplitude

takes the form

A1-loop4,H
(
1+, 2+, 3+,H

)
= c1|2|3|H; 0 I1|2|3|H; 0

+ c12|3|H; 0 I12|3|H; 0 + c1|2|3H; 2 I1|2|3H; 2
[
μ2
]

+ c12|3H; 2 I12|3H; 2
[
μ2
]
+ cyclic perms. (42)

Which agrees with [38].

The procedure for computing the one-loop ampli-
tudes given above has been fully automated. In partic-
ular, we have implemented the FDF Feynman rules (in-
cluding the (−2ε)-SRs) in FeynArts/FeynCalc [39], to
build automatically the tree-level amplitudes to be sewn
in the cuts. Then, the coefficients of the master integrals
are determined by applying the integrand reduction via
Laurent expansion [40], which has been implemented in
Mathematica, by using the package S@M [41].

6. Conclusions

At one-loop level, we have explored the unitarity
methods and we have provided a new formalism with
extended helicity spinors and consequently extended
polarisation vectors, which allows for fully reconstruct-
ing the full one loop scattering amplitude. The main
message is that there is an unified formalism in which
the cut-constructible part and the rational part of a scat-
tering amplitude can be found at once. It is enough just
to give off-shellness to the internal momentum in a nat-
ural way related to the dimensional regularisation and
then to perform multiple unitarity cuts for massive in-
ternal legs, where for a massless theory such a mass is
exactly the off-shellness.
We have presented a set of very non-trivial examples,

showing that FDF scheme is suitable for computing im-
portant 2 → 2, 3, 4 partonic amplitudes at the next-to-
leading order.

There are many outlooks for this job; they involve the
computation of the analytical expressions for Higgs +
2(3) jets in the final state, and also the two-loop imple-
mentation of our formalism.
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