2,250 research outputs found

    A Phosphomimetic Mutation Stabilizes SOD1 and Rescues Cell Viability in the Context of an ALS-Associated Mutation

    Get PDF
    The majority of amyotrophic lateral sclerosis (ALS)-related mutations in the enzyme Cu,Zn superoxide dismutase (SOD1), as well as a post-translational modification, glutathionylation, destabilize the protein and lead to a misfolded oligomer that is toxic to motor neurons. The biophysical role of another physiological SOD1 modification, T2-phosphorylation, has remained a mystery. Here, we find that a phosphomimetic mutation, T2D, thermodynamically stabilizes SOD1 even in the context of a strongly SOD1-destabilizing mutation, A4V, one of the most prevalent and aggressive ALS-associated mutations in North America. This stabilization protects against formation of toxic SOD oligomers and positively impacts motor neuron survival in cellular assays. We solve the crystal structure of T2D-SOD1 and explain its stabilization effect using discrete molecular dynamics (DMD) simulations. These findings imply that T2-phosphorylation may be a plausible innate cellular protection response against SOD1-induced cytotoxicity, and stabilizing the SOD1 native conformation might offer us viable pharmaceutical strategies against currently incurable ALS

    Nutrient addition increases grassland sensitivity to droughts

    Get PDF
    Grasslands worldwide are expected to experience an increase in extreme events such asdrought, along with simultaneous increases in mineral nutrient inputs as a result of human industrialactivities. These changes are likely to interact because elevated nutrient inputs may alter plantdiversity and increase the sensitivity to droughts. Dividing a system?s sensitivity to drought intoresistance to change during the drought and rate of recovery after the drought generates insights intodifferent dimensions of the system?s resilience in the face of drought. Here, we examine the effects ofexperimental nutrient fertilization and the resulting diversity loss on the resistance to and recoveryfrom severe regional droughts. We do this at 13 North American sites spanning gradients of aridity, 5annual grasslands in California and 8 perennial grasslands in the Great Plains. We measured rate ofresistance as the change in annual aboveground biomass (ANPP) per unit change in growing seasonprecipitation as conditions declined from normal to drought. We measured recovery as the change inANPP during the post drought period and the return to normal precipitation. Resistance and recoverydid not vary across the 400 mm range of mean growing season precipitation spanned by our sites inthe Great Plains. However, chronic nutrient fertilization in the Great Plains reduced drought resistanceand increased drought recovery. In the California annual grasslands, arid sites had a greater recoverypost-drought than mesic sites, and nutrient addition had no consistent effects on resistance orrecovery. Across all study sites, we found that pre-drought species richness in natural grasslands wasnot consistently associated with rates of resistance to or recovery from the drought, in contrast toearlier findings from experimentally assembled grassland communities. Taken together, these resultssuggest that human-induced eutrophication may destabilize grassland primary production, but theeffects of this may vary across regions and flora, especially between perennial and annual-dominatedgrasslands.Fil: Bharath, Siddharth. University of Minnesota; Estados UnidosFil: Borer, Elizabeth. University of Minnesota; Estados UnidosFil: Biederman, Lori A.. owa State University; Estados UnidosFil: Blumenthal, Dana M.. State University of Colorado - Fort Collins; Estados UnidosFil: Fay, Philip A.. United States Department of Agriculture; Estados UnidosFil: Gherardi, Laureano. Arizona State University; Estados UnidosFil: Knops, Johannes M. H.. United States Department of Agriculture; Estados UnidosFil: Leakey, Andrew D. B.. State University of Colorado - Fort Collins; Estados UnidosFil: Yahdjian, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Seabloom, Eric. University of Minnesota; Estados Unido

    Nonnative SOD1 trimer is toxic to motor neurons in a model of amyotrophic lateral sclerosis

    Get PDF
    Protein aggregation is a hallmark of neurodegenerative disease and is hypothesized to cause neuron death. Despite extensive study of disease-associated aggregating proteins, mechanisms of neuron death remain a mystery, and no cures or effective treatments yet exist. Here, we demonstrate the toxicity of a small aggregate of the Cu,Zn superoxide dismutase (SOD1) protein, associated with amyotrophic lateral sclerosis (ALS). We present an experimentally verified structural model of this toxic species and show that SOD1 mutants designed to promote formation of this aggregate increase cell death, providing a direct link between aggregate presence and neuron death. Knowledge of toxic species and the ability to manipulate their formation provides a valuable direction for pursuit of therapeutic strategies in ALS

    Population genomics of domestic and wild yeasts

    Get PDF
    The natural genetics of an organism is determined by the distribution of sequences of its genome. Here we present one- to four-fold, with some deeper, coverage of the genome sequences of over seventy isolates of the domesticated baker's yeast, _Saccharomyces cerevisiae_, and its closest relative, the wild _S. paradoxus_, which has never been associated with human activity. These were collected from numerous geographic locations and sources (including wild, clinical, baking, wine, laboratory and food spoilage). These sequences provide an unprecedented view of the population structure, natural (and artificial) selection and genome evolution in these species. Variation in gene content, SNPs, indels, copy numbers and transposable elements provide insights into the evolution of different lineages. Phenotypic variation broadly correlates with global genome-wide phylogenetic relationships however there is no correlation with source. _S. paradoxus_ populations are well delineated along geographic boundaries while the variation among worldwide _S. cerevisiae_ isolates show less differentiation and is comparable to a single _S. paradoxus_ population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of _S. cerevisiae_ shows a few well defined geographically isolated lineages and many different mosaics of these lineages, supporting the notion that human influence provided the opportunity for outbreeding and production of new combinations of pre-existing variation

    Plant species’ origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands

    Get PDF
    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands

    Drivers of the microbial metabolic quotient across global grasslands

    Get PDF
    Aim: The microbial metabolic quotient (MMQ; mg CO2-C/mg MBC/h), defined as the amount of microbial CO2 respired (MR; mg CO2-C/kg soil/h) per unit of microbial biomass C (MBC; mg C/kg soil), is a key parameter for understanding the microbial regulation of the carbon (C) cycle, including soil C sequestration. Here, we experimentally tested hypotheses about the individual and interactive effects of multiple nutrient addition (nitrogen + phosphorus + potassium + micronutrients) and herbivore exclusion on MR, MBC and MMQ across 23 sites (five continents). Our sites encompassed a wide range of edaphoclimatic conditions; thus, we assessed which edaphoclimatic variables affected MMQ the most and how they interacted with our treatments. Location: Australia, Asia, Europe, North/South America. Time period: 2015–2016. Major taxa: Soil microbes. Methods: Soils were collected from plots with established experimental treatments. MR was assessed in a 5-week laboratory incubation without glucose addition, MBC via substrate-induced respiration. MMQ was calculated as MR/MBC and corrected for soil temperatures (MMQsoil). Using linear mixed effects models (LMMs) and structural equation models (SEMs), we analysed how edaphoclimatic characteristics and treatments interactively affected MMQsoil. Results: MMQsoil was higher in locations with higher mean annual temperature, lower water holding capacity and lower soil organic C concentration, but did not respond to our treatments across sites as neither MR nor MBC changed. We attributed this relative homeostasis to our treatments to the modulating influence of edaphoclimatic variables. For example, herbivore exclusion, regardless of fertilization, led to greater MMQsoil only at sites with lower soil organic C (< 1.7%). Main conclusions: Our results pinpoint the main variables related to MMQsoil across grasslands and emphasize the importance of the local edaphoclimatic conditions in controlling the response of the C cycle to anthropogenic stressors. By testing hypotheses about MMQsoil across global edaphoclimatic gradients, this work also helps to align the conflicting results of prior studies
    • …
    corecore