78 research outputs found
Modelling of indoor air pollutants dispersion: New tools
Ventilation systems are used for create a thermally comfortable environment and good indoor air quality. It is therefore essential to have adequate tools for predicting the performance of these systems. Among the various approachs, the computational fluid dynamics could be a useful tool for the design of the ventilation system. When dealing with pollutants dispersion problems, a steady state averaged simulation can be misleading because it is not able to properly predict and model peak concentrations, which can be relevant even if temporary. An interesting approach is the use of LES (Large Eddy Simulations) simulations to obtain a better description of concentrations oscillations. In this framework, the aim of this work is the validation of simulation carried out using the FDS (Fire Dynamic Simulator) software with an actual case study, already studied with a mock-up. Secondly, two new configurations of the ventilation system are proposed, in order to stress the capacity of the software to describe complex and different features, classical of HVAC (Heating, Ventilation and Air Conditioning) systems. Interesting conclusions about efficiency are drawn from the comparison, highlighting the potentiality of the software
Universality and diversity of folding mechanics for three-helix bundle proteins
In this study we evaluate, at full atomic detail, the folding processes of
two small helical proteins, the B domain of protein A and the Villin headpiece.
Folding kinetics are studied by performing a large number of ab initio Monte
Carlo folding simulations using a single transferable all-atom potential. Using
these trajectories, we examine the relaxation behavior, secondary structure
formation, and transition-state ensembles (TSEs) of the two proteins and
compare our results with experimental data and previous computational studies.
To obtain a detailed structural information on the folding dynamics viewed as
an ensemble process, we perform a clustering analysis procedure based on graph
theory. Moreover, rigorous pfold analysis is used to obtain representative
samples of the TSEs and a good quantitative agreement between experimental and
simulated Fi-values is obtained for protein A. Fi-values for Villin are also
obtained and left as predictions to be tested by future experiments. Our
analysis shows that two-helix hairpin is a common partially stable structural
motif that gets formed prior to entering the TSE in the studied proteins. These
results together with our earlier study of Engrailed Homeodomain and recent
experimental studies provide a comprehensive, atomic-level picture of folding
mechanics of three-helix bundle proteins.Comment: PNAS, in press, revised versio
TRAM: a New Quantitative Methodology for Tunnel Risk Analysis
The paper illustrates and describes the structure of a new quantitative model of risk analysis for road tunnels named TRAM (Tunnel Risk Analysis Model). The result of the model, in accordance with the European Directive and the Italian Legislative Decree, returns the F-N curves of societal risk, in other words functions that relate the frequency of occurrence of an accidental scenario (F) with the expected consequences in terms of potential victims (N).
Starting from two types of initial events, a fire and a Dangerous Goods (DG) release, a total of 18 accidental scenarios was defined. The frequencies of occurrence of each accidental scenario is obtained using the Event Tree Analysis (ETA) technique. For each scenario, the number of fatalities, expressed in terms of deaths, is obtained by simulating the formation dynamics of the queue of vehicles, using a model able to calculate the queue length, depending on traffic, the vehicle type, as well as the closure time of the tunnel. Then, a distribution model of the potentially exposed users has been defined and coupled with an egress model. The users’ tenability is estimated on the basis of the egress model and the evolution of each accidental scenario, which is evaluated using a zone model. The proposed model can simulate each of the 18 accidental scenarios in several different positions along the tunnel, considering the impact that different tunnel infrastructure measures, equipment and management procedures can have on the users egress and on the propagation of the effects of the accidental scenarios. The model is able to consider the interdependence between these measures and their reliability in terms of their availability in an emergency situation. Finally, to validate the model, comparisons are made with the QRAM software developed by PIARC for some representative case studies. Through this model, it is possible to perform the risk analysis of a tunnel in an actual configuration and compare the expected value of damage with the corresponding one of the tunnel in a virtual configuration, as prescribed by the Italian decree compliant with the European Directive 2004/54/EC
Identification of novel modifiers of Aβ toxicity by transcriptomic analysis in the fruitfly.
The strongest risk factor for developing Alzheimer's Disease (AD) is age. Here, we study the relationship between ageing and AD using a systems biology approach that employs a Drosophila (fruitfly) model of AD in which the flies overexpress the human Aβ42 peptide. We identified 712 genes that are differentially expressed between control and Aβ-expressing flies. We further divided these genes according to how they change over the animal's lifetime and discovered that the AD-related gene expression signature is age-independent. We have identified a number of differentially expressed pathways that are likely to play an important role in the disease, including oxidative stress and innate immunity. In particular, we uncovered two new modifiers of the Aβ phenotype, namely Sod3 and PGRP-SC1b
Finite Size Effects in Simulations of Protein Aggregation
It is becoming increasingly clear that the soluble protofibrillar species that proceed amyloid fibril formation are associated with a range of neurodegenerative disorders such as Alzheimer's and Parkinson diseases. Computer simulations of the processes that lead to the formation of these oligomeric species are starting to make significant contributions to our understanding of the determinants of protein aggregation. We simulate different systems at constant concentration but with a different number of peptides and we study the how the finite number of proteins affects the underlying free energy of the system and therefore the relative stability of the species involved in the process. If not taken into account, this finite size effect can undermine the validity of theoretical predictions regarding the relative stability of the species involved and the rates of conversion from one to the other. We discuss the reasons that give rise to this finite size effect form both a probabilistic and energy fluctuations point of view and also how this problem can be dealt by a finite size scaling analysis
Intrinsic determinants of neurotoxic aggregate formation by the amyloid β peptide
The extent to which proteins aggregate into distinct structures ranging from prefibrillar oligomers to amyloid fibrils is key to the pathogenesis of many age-related degenerative diseases. We describe here for the Alzheimer's disease-related amyloid β peptide (Aβ) an investigation of the sequence-based determinants of the balance between the formation of prefibrillar aggregates and amyloid fibrils. We show that by introducing single-point mutations, it is possible to convert the normally harmless Aβ40 peptide into a pathogenic species by increasing its relative propensity to form prefibrillar but not fibrillar aggregates, and, conversely, to abolish the pathogenicity of the highly neurotoxic E22G Aβ42 peptide by reducing its relative propensity to form prefibrillar species rather than mature fibrillar ones. This observation can be rationalized by the demonstration that whereas regions of the sequence of high aggregation propensity dominate the overall tendency to aggregate, regions with low intrinsic aggregation propensities exert significant control over the balance of the prefibrillar and fibrillar species formed, and therefore play a major role in determining the neurotoxicity of the Aβ peptide. © 2010 by the Biophysical Society
An effective all-atom potential for proteins
We describe and test an implicit solvent all-atom potential for simulations
of protein folding and aggregation. The potential is developed through studies
of structural and thermodynamic properties of 17 peptides with diverse
secondary structure. Results obtained using the final form of the potential are
presented for all these peptides. The same model, with unchanged parameters, is
furthermore applied to a heterodimeric coiled-coil system, a mixed alpha/beta
protein and a three-helix-bundle protein, with very good results. The
computational efficiency of the potential makes it possible to investigate the
free-energy landscape of these 49--67-residue systems with high statistical
accuracy, using only modest computational resources by today's standards
Optimized Folding Simulations of Protein A
We describe optimized parallel tempering simulations of the 46-residue
B-fragment of protein A. Native-like configurations with a root-mean-square
deviation of approximately 3A to the experimentally determined structure
(Protein Data Bank identifier 1BDD) are found. However, at biologically
relevant temperatures such conformations appear with only about 10% frequency
in our simulations. Possible short comings in our energy function are
discussed.Comment: 6 pages, 8 figure
Formation and Growth of Oligomers: A Monte Carlo Study of an Amyloid Tau Fragment
Small oligomers formed early in the process of amyloid fibril formation may be the major toxic species in Alzheimer's disease. We investigate the early stages of amyloid aggregation for the tau fragment AcPHF6 (Ac-VQIVYK-NH2) using an implicit solvent all-atom model and extensive Monte Carlo simulations of 12, 24, and 36 chains. A variety of small metastable aggregates form and dissolve until an aggregate of a critical size and conformation arises. However, the stable oligomers, which are β-sheet-rich and feature many hydrophobic contacts, are not always growth-ready. The simulations indicate instead that these supercritical oligomers spend a lengthy period in equilibrium in which considerable reorganization takes place accompanied by exchange of chains with the solution. Growth competence of the stable oligomers correlates with the alignment of the strands in the β-sheets. The larger aggregates seen in our simulations are all composed of two twisted β-sheets, packed against each other with hydrophobic side chains at the sheet–sheet interface. These β-sandwiches show similarities with the proposed steric zipper structure for PHF6 fibrils but have a mixed parallel/antiparallel β-strand organization as opposed to the parallel organization found in experiments on fibrils. Interestingly, we find that the fraction of parallel β-sheet structure increases with aggregate size. We speculate that the reorganization of the β-sheets into parallel ones is an important rate-limiting step in the formation of PHF6 fibrils
- …